Dr Dingle's Blog

Environmental Estrogens and Endocrine Disrupting Chemicals (EDC's)

Environmental Estrogens and Endocrine Disrupting Chemicals (EDC's)

Since the 1980's, there has been a growing amount of research toward the potential interaction between these environmental estrogens and wild animals, with a number of reports detailing the emergence of 'feminised wildlife’ around the world, and a range of adverse effects in humans including decreased sperm count, increased cases of testicular cancer and testicular abnormalities, increased breast cancer in men and women and premature or precocious puberty. Other adverse health outcomes linked with EDC’s include headache, migraine, depression, gastrointestinal disturbances, insomnia, changes in breast tissue and in vaginal bleeding. More chronic symptoms affect the cardiovascular system, the skin (itching, rash, abnormal pigmentation), the gallbladder, and tumours particularly of the breast but also uterus, cervix, vagina and liver. While other studies have shown increases in the organ weight of estrogen-sensitive tissues such as the uterus, and calcium and bone metabolism are all examples of the estrogenic effects. Even how we age and age at menopause can be affected by these chemicals. In support of this at least one professional and very conservative group, the Endocrine Society, has concluded that sufficient evidence now exists linking endocrine disrupting chemicals (EDCs) to adverse human reproductive effects, including possible epigenetic and trans-generational effects.

Unfortunately, our babies are being born pre-polluted with chemicals detectable in their blood, in the placenta and in amniotic fluid because of exposure to these chemicals during pregnancy and throughout the mother’s life. The placental barrier has been shown to allow these chemicals to cross, as many of them have been measured in human fetal cord blood, fetal serum, human amniotic fluid and even newborn stools (meconium). Exposure to these chemicals before birth poses a serious health risks to developing fetus, infants and young children as shown by the increasing adverse effects including negative birth outcomes, childhood obesity and increasing intellectual disabilities. It is believed that current levels of environmental estrogen exposure results in lower birth weights, smaller head circumferences, poorer neuromuscular maturity and visual recognition, delays in psychomotor development, short term memory problems, and growth retardation in newborn babies. Fetal exposure to these environmental estrogens are suspected of disrupting thyroid functioning, sexual differentiation of the brain in foetal development and cognitive motor function and cause anxious behaviour. They are also able to bind to neurotransmitters such as epinephrine, neuroepinophrine and dopamine enabling estrogens to influence the body's central nervous system (CNS). Environmental estrogens have also been shown to effect the body’s immune system.

Studies have found strong links with exposure to excessive levels of estrogen in males with penis abnormalities, lower libido, congenital anomalies, failure of the testes to descend and testicular cancer, reduced penis size and increased embryo mortality.

What is most concerning regarding control of these chemicals is that there are no indications given or regulations set regarding the minimal age at which they should be used or exposed to them. Increasingly, pregnant mothers, infants, pre-pubescent and pubescent children are being exposed to a large number of products containing these chemicals, with no research to show that exposure is safe during these critical periods of development.

Equally strong is the evidence that these same chemicals can cause some of the most common cancers: prostate and testicular cancer in men and breast cancer in women. One of the most troubling is their association with breast cancer. Breast cancer is the major cancer affecting women in the Western world and one of the most disturbing and well documented current trends is the alarming increase in breast cancer incidence over the past few decades. Fifty years ago the risk rate was one woman in 20; today it is one in 8 and approximately two-thirds of breast tumors are estrogen receptive, and environmental estrogens like parabens, phthalates and BPA are known to bind to estrogen receptors. Estrogen-dependent cancers, such as breast cancer, are known to be highly responsive to estrogens for growth. Even more disturbing is the increase in numbers of young girls developing breast cancer.

 

https://www.drdingle.com/collections/book-sales/products/dangerous-beauty-1

 

Read more →

Curcumin (turmeric)stops age and diet relted arterial damage

Curcumin (turmeric)stops age and diet relted arterial damage

Curcumin, a main component of natural turmeric (Curcuma longa Linn, Turmeric), is a type of polyphenol, which has long been used for curry spice, Chinese traditional herbal medicine, or in Japan, as food coloring for Japanese confectioneries.
Recent studies have shown that curcumin has different beneficial physiological activities in the body. Curcumin is known to have anti-oxidative and anti-inflammatory actions and anticancer action through multiple actions (cytostasis, induction of apoptosis, and anti-angiogenesis, anti-virus action, and cytoprotective).
Furthermore, curcumin is known to lower blood lipid (fat) levles, affecting various transcription factors that control gene expression involved in glucose and fat metabolism, and curcumin intake is expected to reduce different disorders caused by a high-fat diet (HFD).
In this study, they examined the effects of long-term administration of curcumin on artery aging and chronic inflammation—the causes of arteriosclerotic disease. in the high fat diet group oxidative stress increased with cell regulation in the arteries followed by increased dying cells and enhanced inflammation. While the group with curcumin added had suppression of oxidative stress and the arteries of mice at 80 weeks (old age) were the equivalent of those of the 8 week old mice in the experiment.
It seems curcumin has anti-ageing effects on our arteries which is why I supplement with it every day
Source. Curcumin Inhibits Age-Related Vascular Changes in Aged Mice Fed a High-Fat Diet.
https://www.mdpi.com/2072-6643/10/10/1476/htm
Read more →

Fasting reverses Type 2 diabetes

Fasting reverses Type 2 diabetes

Despite what we are often told the overwhelming evidence shows that Type 2 diabetes is a diet and lifestyle illness. It also shows that when you reverse the conditions that caused it the disease is also reversible.

Type 2 diabetes (T2D) is a chronic disease closely linked to the epidemic of obesity that requires long-term medical attention to limit the development of its wide range of complications. Many of these complications arise from the combination of resistance to insulin action, inadequate insulin secretion, and excessive or inappropriate glucagon secretion. Approximately 10% of the population of the USA and Canada have a diagnosis of T2D, and the morbidity and mortality rates associated with it are fairly high. The economic burden of T2D in the USA is $245 billion and around $20 billion in Australia.

This case documents three patients referred to the Intensive Dietary Management clinic in Toronto, Canada, for insulin-dependent type 2 diabetes. It demonstrates the effectiveness of therapeutic fasting to reverse their insulin resistance, resulting in cessation of insulin therapy while maintaining control of their blood sugars. In addition, these patients were also able to lose significant amounts of body weight, reduce their waist circumference and also reduce their glycated haemoglobin level.

These three cases exemplify that therapeutic fasting may reduce insulin requirements in T2D. Given the rising cost of insulin, patients may potentially save significant money. Further, the reduced need for syringes and blood glucose monitoring may reduce patient discomfort.

Therapeutic fasting has the potential to fill this gap in diabetes care by providing similar intensive caloric restriction and hormonal benefits as bariatric surgery without the invasive and dangerous surgery. During fasting periods, patients are allowed to drink unlimited amounts of very low-calorie fluids such as water, coffee, tea and bone broth. A general multivitamin supplement is encouraged to provide adequate micronutrients. Precise fasting schedules vary depending primarily on the patient’s preference, ranging from 16 hours to several days. On eating days, patients are encouraged to eat a diet low in sugar and refined carbohydrates, which decreases blood glucose and insulin secretion.

This means that patients with T2D can reverse their diseases without the worry of side effects and financial burden of many pharmaceuticals, as well as the unknown long-term risks and uncertainty of surgery, all by means of therapeutic fasting.

 

Source http://casereports.bmj.com/content/2018/bcr-2017-221854.full

Read more →

What is stress

What is stress

Despite the increases in technology, life style changes and the promise of more free time, it is becoming apparent that stress is becoming one of the greatest health concerns of the Western World. Recent statistics indicate that between 70 ‑ 80 percent of all health related problems are either precipitated or aggravated by stress. Although the way we live, and the situations we face everyday have changed over thousands of years, our modern brain still has the ability (as it has had for thousands of years) to give us the same feelings and responses to stress. This is because these are deeply instinctive responses of protection and survival.

‘Distress’ is stress that arises from a negative situation such having an argument, being under too much pressure at work, or being called into the bosses office. ‘Eustress’ on the other hand, is stress that results from a positive situation, such as getting married or receiving an award . A mild amount of pressure can be beneficial; making a person more motivated to increase performance. However, the major difference between the positive eustress and the negative distress is how you perceive them. To one person public speaking creates eustress but to another it creates distress and high pressure for one individual in the work environment may not be experienced by another, being instead seen as more of a personal challenge. They both place the same physiological demands on the body, but are processed mentally and emotionally in different manners.

However, too much pressure or pressure for a long period of time can lead to excessive stress, a state of distress, which is unhealthy for both the mind and body. Stress can also be looked at from being acute and chronic stress.

The evolutionary explanation behind stress is that ancestor’s perceived reaction to threats and dangers has survival value. When hunter-gathers would risk their lives in hunting for food or defending their community they would experience dangers that would trigger the bodies stress response, preparing them for action, to either fight or flee from the threat. In today’s society, stress experienced is not usually life threatening but still triggers the same stress response.
Read more →

Dr Dingle’s Blood Pressure Smoothie

Dr Dingle’s Blood Pressure Smoothie

The reason I call it the blood pressure smoothie is all of the ingredients have been shown in many scientific studies to reduce blood pressure. By no way is this meant to replace advice from you GP but you can share it with them and see if they are interested in preventing the problem rather than just treating it with pharmaceuticals. Remember also that I am not a GP I am just the guy who does all the research which is why I have a PhD.

4 ingredients in order of importance

Beetroot

Almonds (soaked for at least 8 hours)

Linseed (flaxseed)

Filtered re-mineralised ionized water.

 

Extras for taste and minerals

Banana

Coconut

Dates

 

Start by grinding the linseed and the almond in the smoothie maker.

Add the beetroot and the filtered water to make up to the constituency you need.

If you want to make it a bit sweeter add some ripe banana, dates or coconut water (and coconut meat if you have the whole coconut) as they are rich in Potassium (and other minerals) which is essential for muscle relaxation and tastes great. But wait till the banana is ripe for the best taste. You can also cold green tea instead of water to add to the antioxidant mix.

The properties that make this smoothie such a potent blood pressure mix is all of the ingredients have excellent antioxidant properties, rich in minerals and other nutrients liked with lowering blood pressure in scientific studies.

Background

High blood pressure or hypertension is having a blood pressure reading of above of around 90mm Hg on 140mm Hg. Hypertension itself is not a disease but a condition or as an indicator of ‘increased risk’ of cardiovascular disease. Patients who are hypertensive have an increased risk of heart attack and stroke due to the direct correlation between the two. Hypertension also contributes significantly to the increased risk of kidney failure and other chronic illness.

In healthy people the cells of blood vessels produce the substance called nitric oxide (NO) which instructs smooth muscles surrounding arteries to relax. If they cant relax they stay rigid and you end up with high blood pressure. The NO is produced in a single layer of cells that line the inside of the arteries called the endothelium. If this tissue is damaged in the case of too much pressure, oxidation or through other means it stops producing NO and blood pressure rises.

Many of the beneficial actions of nutrition on lowering blood pressure results both directly and indirectly through improving endothelial tissue and NO production and release from this tissue. Two major pathways to increase NO are increase the rates of nitrates in the diet, the building block for NO, and L-Arginine which stimulate the enzyme to manufacture NO. Endothelial-derived NO also inhibits platelet adhesion, activation, secretion, and aggregation and promotes platelet disaggregation so you are less likely to have a stroke. A third mechanism that is absolutely critical is to protect and repair the endothelium, remember it is only one cell thick and very susceptible to damage. Vitamin C and antioxidants are essential for this part.

Diets high in dietary nitrate such as beetroot are associated with reduced blood pressure increased exercise performance as a result of vasodilation (expansion) of the blood vessels and a decreased incidence in cardiovascular disease. 100-200mg of beetroot per day has been shown to produce immediate effects of lowering blood pressure by around 15 mm of Hg. Beetroot is also rich in vitamins, phytochemicals and contains large amounts of iron and folic acid Mg, Na and Ca. Apart from the nitrates the major bioactive molecules in beet are polyphenols, flavonoids, betalains, therapeutic enzymes, ascorbic acid, and dehydroascorbic acid (DHAA). So they not only provide the ingredients for NO production but also help in repair and protection of the endothelium.

Almonds have one of the highest sources of L-Arginine (most nuts have lots of L-Arginine so you can substitute the almonds if you want) which stimulates NO synthesis. Studies of almonds have shown reductions of 5-6 mm of blood pressure. It is important to soak the almonds as they (all nuts and seeds) have enzyme-inhibiting factors in them which stop them from germinating until they have enough water. These enzyme inhibitors also stop the absorption of some nutrients, particularly minerals. When you soak the nuts many of the nutrients also become more available for digestion.

Flaxseed is rich in Omega 3 fatty acids, L Arginine (about 20% less than almonds), lignans, antioxidants and fiber that together probably provide benefits to patients with cardiovascular disease. Studies on consuming 30g of flaxseed have been shown to reduce blood pressure by up to 15 mm Hg.

The great thing about this smoothie is that you can add just about anything else you want to it and it will make it even tastier and better for you.
Read more →

Toxic Load Adds to Your Weight Load

Toxic Load Adds to Your Weight Load

Exposure to “obesogenic” chemicals has an important role in the obesity and diabetes pandemic. Studies dating back to the 1970s have shown that low-dose chemical exposures were associated with weight gain in experimental animals. Since then, a growing number of studies show links between toxins and weight gain, obesity and diabetes. Known or suspected culprits behind negative epigenetic changes include toxins such as heavy metals, pesticides, plastic compounds including BPA, diesel exhaust, tobacco smoke, polycyclic aromatic hydrocarbons, hormones, radioactivity, viruses, bacteria and endocrine disrupting chemicals.

The main role of fat cells is to store energy and release it when needed. Scientists now know that fat tissue acts as an endocrine (hormone) organ, releasing hormones related to appetite and metabolism. Research to date suggests that different obesogenic compounds may have different mechanisms of action, some affecting the number of fat cells, others the size of fat cells, and still others the hormones that influence appetite, satiety, food preferences, and energy metabolism. Another mechanism through which these chemical obesogens can contribute to weight gain is through their impact on the gut microbiome, linking gut ecology and environmental chemicals to obesity and diabetes.

BPA, or bisphenol-A, a chemical found in everything from plastic bottles to metal food containers, may be partly to blame for our excess weight. BPA has been shown to alter the body’s metabolism, increasing weight gain and making it difficult to lose weight. In a study of 1,326 children, girls between ages 9 and 12 with high BPA levels had double the risk of being obese than girls with low BPA levels, validating previous animal and human studies. The chemical can alter the body’s metabolism and make it harder to lose weight. Girls with high levels of BPA, two micrograms per litre or more, were twice as likely to be obese as girls with lower levels of BPA in the same age group. Girls with very high levels of BPA, more than 10 micrograms per litre, were five times more likely to be obese, the study showed. In animal experiments, a mother’s exposure to BPA is producing the same outcomes that we see in humans born light at birth: an increase in abdominal fat and glucose intolerance. BPA affected rodent fat cells at very low doses, 1,000 times below the dose that regulatory agencies presume causes no effect in humans.

A growing body of evidence shows that the use of certain pesticides may also be associated with weight gain and diabetes risk. In animal experiments, mice fed high-fat diets gained about 30% more weight and had higher blood sugar than other mice eating the same high-fat diets when they also ingested doses of a brominated flame retardant, hexabromocyclododecane (HBCD), which is used in building materials and insulation. Perfluorooctanoic acid (PFOA) is a ubiquitous chemical, used in non-stick cookware, Gore-Tex™ waterproof clothing, Scotchgard™ stain repellent on carpeting and mattresses and is a potential endocrine disruptor. Researchers gave pregnant mice PFOA during pregnancy and when the offspring reached adulthood, they became obese, reaching significantly higher weight levels than controls. Phthalates are plasticizers that have been related to obesity in humans and occur in many PVC items as well as in scented items such as air fresheners, laundry products, and personal care products, and many plastics.

Read more →

Twenty first century stress

Twenty first century stress

A typical day in the life of the twenty first century busy person begins like this - woken by the blaring alarm clock or even worse a raucous radio announcer, a bowl of over processed breakfast food, or nothing to eat at all, and a rush to get to get to work. Meetings, reports, deadlines, peer pressure - the list goes on. The body’s fight or flight mechanism is triggered but without the safety valve of physical activity to defuse it's state of red alert. The 'distress' caused by these events triggers adrenalin and cortisol to flow into the bloodstream. And as the day or the week goes on, it doesn’t get any better. Their stress results in increased irritability, anger, aggression, more arguments and depression while increasing the risk of dysfunction, disease or even disability. Trying to function with high stress levels also results in low productivity at work and at home.

The lifestyle of the twenty first century person is filled with stress - stress created by family, friends, work and themselves. It's a combination of psychological and physical 'stressors'. Much of the psychological stress we experience is a largely a product of how we think - our attitude. In the twenty first century, psychological distress often has more to do with our overreaction to situations than it does to the actual external pressures. It's not so much as what happens to us, as how we react or respond to the situation or event. Ten thousand years ago as fisher hunter-gatherers, our stress response to a bear, a snake or a fire heading towards us was critical for our survival. Now the threat posed by such physical stressors has largely been replaced by a new range of far more subtle and insidious psychological stressors. Much of this is the psychological pressure people feel as a result of something happening around them or to them. The pressure of too much work, deadlines or exams, complex relationships, arguments or being 'told off'. However, the difference between positive 'eustress' and negative 'distress' is how a person interprets these events and how many of them they're subjected to.

Fortunately there are many strategies we can use to take control of this stress which can easily be incorporated into our everyday activities. However, when you are stressed, you rarely have the skills to step back and identify the cause. Even if you do, it's difficult to take action if you have not been given the tools you need to take control of the situation or your reaction to it. Stress, and the negative thinking that goes with it, can become an addiction. Negative thinking becomes a habitual way of responding, and a downward spiral begins - down into more and more negative thinking and as a result more and more stress.

The new forms of physical stress add to our burden of psychological stress, but are often so subtle or such an integral part of our busy lives that we remain oblivious to them. These physical stressors produce a negative effect on our bodies no matter how or what we think about them. You may be surprised to learn that the main ones include your alarm clock, the modern media, low quality food, loud noises, short or poor quality sleep and late nights. As we become more psychologically stressed we actually have a tendency to expose ourselves to more of these particular physical stressors. For example, if you are not getting enough sleep, you have to rely more and more on your alarm clock, and if you oversleep and wake up already fatigued, you may not have time for breakfast or may feel you need to jerk yourself in wakefulness with a shot of caffeine. Because we feel pressured and fatigued we may resort to junk foods and energy boosters, such as sugar and fat laden foods to get through the day. Or you reach the weekend feeling as twisted as a pretzel, and a bit too much partying is needed to 'unwind'. So the stress spiral becomes tighter and tighter.

Much of what is aired on television is negative and shows scenes that our subconscious mind does not distinguish from reality, particularly scenes of violence and brutality. Our minds aren't designed to cope with seeing these events every night on the news. While our conscious mind can override these images to a large degree, even an adult will still experience some subtle negative influence in the brain.

The alarm clock blaring creates an instant state of stress which is aggravated by the grating voice of the radio announcer trying to sound as though they're awake. The body is propelled from deep sleep to a state of ready to fight off anything. Similarly, loud noises are also a stress which destroy concentration in the short term and hearing in the long term. Blaring music on smart phones (and I have one but don't have it on too loud) are not only a major issue for hearing loss but also an increased number of waking accidents at road and railway crossings.

Poor food stresses the body as it depletes nutrients which are essential for its effective functioning. Top of the list are the highly processed foods with sugar, vegetable oils, processed grains and food additives. Don’t be mislead by the plethora of ridiculous attempts to make processed food look healthy. My guide is that if it is processed it has become a stressor on the body and is no longer a food. Eating quickly and overeating also places stresses on your digestive system. You can't absorb the nutrition in your food as effectively if you gulp your meal and overload your stomach by eating too much. Eating this way requires more effort from your digestive system, more blood is redirected to your gut, making you feel sluggish, fatigued and more stressed.

At last, the end of your busy day and time for well-earned sleep. But can you get to sleep, and when you do, do you get enough? Mostly, you just don’t seem to get enough. Poor sleep and going to bed late adds to the toll exacted by psychological stress. The average length of sleep has declined from around 9 hours a hundred years ago to seven hours or less today. And the depth of sleep has also declined, thanks to television, caffeine, increasing work pressures and Thomas Edison inventing the electric light. Welcome to the 24-hour stress cycle. Each little bit adding onto the next little bit and the result being more health problems and lower productivity.

Signs of stress and stress related health disorders include sleep problems, digestive and eating disorders, headaches, anxiety, depression, anger and hostility, drug abuse, overeating and eating disorders. These have all reached epidemic proportions in our busy society, even in kids. Too much stress reduces our capacity to function effectively. Stress can short circuit memory and brain function, causing decreased concentration, mental focus and memory, making it more difficult to think clearly, particularly during more stressful periods, such as exams. Stress limits your personal power and the more stress you have the greater are the limitations imposed on reaching your potential.

Another very significant effect of distress is the gradual depletion of the immune system. As early as 1977 studies showed immunosuppression amongst people under stress, as well as students during stressful periods, such as exams. More recent studies have found people with higher levels of psychological stress show a greater susceptibility to infectious disease. Subjects with higher rates of stress were significantly more likely to contract respiratory infections than those who lead comparatively ‘stress free’ lives.

Lesser-known effects of distress include increased cortisol output, resulting in increased appetite and weight gain and depletion of certain nutrients in the body. Current research suggests that stress may play a significant role in increasing the body’s requirement for a range on nutrients, such as C, E, A and B-complex vitamins, minerals such as magnesium, zinc and calcium and omega 3 fatty acids. Fortunately, some animal studies have also shown the effects of stress-induced oxidative damage (free radicals) can be reduced through a diet high in antioxidants.

The good news is stress can be managed and even made into something positive. There are many studies that demonstrate the use of various techniques, including Cognitive Behavioural Therapies such as goal setting and cognitive restructuring, relaxation, meditation, physical activity and dietary changes. Any of these approaches used alone or in combination (and research shows that a combined approach is more effective) can dramatically reduce negative stress. Making time to manage your stress can result in significant improvements in your productivity, and your health. Use as many of the techniques and strategies listed below from the iLEAD program as you can.

Lifestyle

Learn to relax. Take some slow, deep breaths – the more the better.

Learn to meditate. Even 10 minutes a day is a great start, or take up yoga to stretch your body and mind.

Get more physical activity. Physical activity is one of the best ways to de-stress, as it breaks down the stress hormones in your body. Just a quick five minute walk can do wonders. I tell my students to go for a brisk 10 minute walk before exams as it lowers stress and increases the blood flow to the brain. Which is just what you want to improve your thinking.

Environment

Find a nice place to relax, to be able to just get away each day.

Open the windows for some fresh air.

Play some Baroque music

Get some sun each day

Attitude

Set your goals.

Learn some simple techniques to control those busy voices in your head. Yes, of course you have voices. Take control of them. Rather than letting them control you, write down all the dramas you have in a journal. Get them out of your head and put them in perspective.

Realise that we often stress over small and relatively unimportant things. They may seem important now but they won't be in a few weeks and you'll wonder what all the fuss was about if you remember them at all.

Diet

Eat less processed food.

Eat as much wholesome and nourishing food as you can, particularly green vegetables, fruit, nuts and beans as they are 'super foods'.

Eat less processed grain

Eat less meat and dairy

Avoid artificial food colours (102-150) and flavours (600s).

Have a fresh vegetable juice instead of a soft drink.

Cut down sugar and alcohol

What’s great about all these strategies is that they also improve the overall health of the individual and reduce susceptibility to most of our twenty first century chronic diseases. They'll also improve your thinking and consequently your results at work.

 

 

And my final message: wake up to the effects of stress on you now. If you seem to think you don't need to manage your stress better, then you probably really  DO need to. One of the primary symptoms of suffering from too much stress is thinking that you're coping just fine. Implementing some simple strategies now can enhance health and well being for life.
Read more →

Sugar. Sweet poison for the gut.

Sugar. Sweet poison for the gut.

The incidence of diseases associated with a high-sugar diet has increased in the past years and numerous studies have focused on the effects of high sugar intake on the gut microbiota and its role in obesity, metabolic syndrome, CVD, cancer and other chronic inflammatory diseases.[1] But not all sugars are equal, as a fructose-rich diet appears to be more damaging to the intestinal microbiome than a sucrose-rich diet, which tends to increase weight gain.[2]

Fructose is not absorbed into the small intestine but passed through to the large intestine, where it comes into contact with the microbiome to alter species diversity.[3] Even a small dose of fructose, 0.1% (around 1g /kg), which is found in most modern foods, overwhelms the ability of the small intestine to absorb and clear it, resulting in fructose reaching the large intestine microbiome. However, the microbiome is not designed to process sugar and, as a result, can lead to dysbiosis even when the sugar is added to a normal diet.[4] Microbial diversity significantly decreases, as well as the number of commensal bacteria[5] when consuming a sugar diet—even after one week.[6] Chronic intake of fructose is associated with intestinal inflammation, leaky gut and elevated movement of toxins and other microbial products across the gut wall.[7] Fructose also worsens symptoms in irritable bowel syndrome (IBS);[8] 64% of patients suffering from IBS were not able to absorb fructose properly.[9]

Animal studies show increased liver problems when mice are fed a high-fructose diet[10] and multiple human studies have established that fructose contributes to the progression of NAFLD (non-alcoholic fatty liver disease) by modulating intestinal microbiota. In animal studies, a diet enriched with fructose not only induced NAFLD but also negatively affected the gut barrier and the microbiota, leading to dysbiosis, increased inflammation and oxidation and degrading of the mucosa barrier.[11] The liver is the first organ exposed to gut-derived toxins, receiving 70% of the blood supply from the intestine. So, the liver acts as a first line of defence against bacterial pathogens and toxins. The gut microflora has been shown to stimulate deposits of liver fat contributing to NAFLD.[12] Conversely, supplementation with probiotics and prebiotics has been shown to improve the outcome of NAFLD.[13] The form fructose comes in, whether liquid or solid, has different impacts on the gut microbiota and the integrity of the gut wall.[14]

 

[1] Lambertz et al., 2017.

[2] Volynets et al., 2017.

[3] Jang et al., 2018.

[4] Ferrere et al., 2016.

[5] Zhang et al., 2017.

[6] Sen et al., 2017.

[7] Rosas-Villegas et al., 2017; Lambertz et al., 2017; Volynets et al., 2017.

[8] Melchior et al., 2014.

[9] Goebel-Stengel et al., 2014.

[10] Ferrere et al., 2016.

[11] Jegatheesan et al., 2016; Lambertz et al., 2017.

[12] Mouzaki et al., 2012.

[13] Lambertz et al., 2017.

[14] Mastrocola et al., 2018.

Read more →

Sugar. Sweet poison for the gut.

Sugar. Sweet poison for the gut.

The incidence of diseases associated with a high-sugar diet has increased in the past years and numerous studies have focused on the effects of high sugar intake on the gut microbiota and its role in obesity, metabolic syndrome, CVD, cancer and other chronic inflammatory diseases.[1] But not all sugars are equal, as a fructose-rich diet appears to be more damaging to the intestinal microbiome than a sucrose-rich diet, which tends to increase weight gain.[2]

Fructose is not absorbed into the small intestine but passed through to the large intestine, where it comes into contact with the microbiome to alter species diversity.[3] Even a small dose of fructose, 0.1% (around 1g /kg), which is found in most modern foods, overwhelms the ability of the small intestine to absorb and clear it, resulting in fructose reaching the large intestine microbiome. However, the microbiome is not designed to process sugar and, as a result, can lead to dysbiosis even when the sugar is added to a normal diet.[4] Microbial diversity significantly decreases, as well as the number of commensal bacteria[5] when consuming a sugar diet—even after one week.[6] Chronic intake of fructose is associated with intestinal inflammation, leaky gut and elevated movement of toxins and other microbial products across the gut wall.[7] Fructose also worsens symptoms in irritable bowel syndrome (IBS);[8] 64% of patients suffering from IBS were not able to absorb fructose properly.[9]

Animal studies show increased liver problems when mice are fed a high-fructose diet[10] and multiple human studies have established that fructose contributes to the progression of NAFLD (non-alcoholic fatty liver disease) by modulating intestinal microbiota. In animal studies, a diet enriched with fructose not only induced NAFLD but also negatively affected the gut barrier and the microbiota, leading to dysbiosis, increased inflammation and oxidation and degrading of the mucosa barrier.[11] The liver is the first organ exposed to gut-derived toxins, receiving 70% of the blood supply from the intestine. So, the liver acts as a first line of defence against bacterial pathogens and toxins. The gut microflora has been shown to stimulate deposits of liver fat contributing to NAFLD.[12] Conversely, supplementation with probiotics and prebiotics has been shown to improve the outcome of NAFLD.[13] The form fructose comes in, whether liquid or solid, has different impacts on the gut microbiota and the integrity of the gut wall.[14]

 

[1] Lambertz et al., 2017.

[2] Volynets et al., 2017.

[3] Jang et al., 2018.

[4] Ferrere et al., 2016.

[5] Zhang et al., 2017.

[6] Sen et al., 2017.

[7] Rosas-Villegas et al., 2017; Lambertz et al., 2017; Volynets et al., 2017.

[8] Melchior et al., 2014.

[9] Goebel-Stengel et al., 2014.

[10] Ferrere et al., 2016.

[11] Jegatheesan et al., 2016; Lambertz et al., 2017.

[12] Mouzaki et al., 2012.

[13] Lambertz et al., 2017.

[14] Mastrocola et al., 2018.

Read more →

A short time between eating your last meal and sleep can increase your risk of breast and prostate cancer.

A short time between eating your last meal and sleep can increase your risk of breast and prostate cancer.

Our modern life involves irregular sleeping and eating patterns that are associated with adverse health effects. Studies have shown late eating habits and short periods between sleep and eating are associated with metabolic syndrome, weight gain and altering the gut microbiome and gut health.
 
This study of breast and prostate cancer patients and their controls in Spain found those sleeping two or more hours after supper had a 20% reduction in cancer risk for breast and prostate cancer combined and in each cancer individually. A similar protection was observed in subjects having supper before 9 pm compared with supper after 10 pm.
The effect of longer breaks between eating and sleep was more pronounced among subjects adhering to cancer prevention recommendations and in morning types.
Adherence to diurnal eating patterns and specifically a long interval between last meal and sleep are associated with a lower cancer risk, stressing the importance of evaluating timing in studies on diet and cancer.
 
source
https://onlinelibrary.wiley.com/doi/abs/10.1002/ijc.31649
Read more →