Dr Dingle's Blog / toxic chemicals

Personal care products and at risk populations

Personal care products and at risk populations

Some people are more likely to have health problems as a result of exposure to cosmetics and personal care products than others, even when the amounts of contaminants present are seemingly quite low. However, when the studies are done, the focus is on one ingredient and its exposure to a healthy animal fed a well-balanced nutritional diet. As individuals, we each have different levels of resilience and tolerance to toxic chemicals based on our genetics and our current level of health, nutrition and even lifestyle factors.

Susceptible groups include:

  • The developing foetus
  • Infants and newborns
  • Pregnant mothers
  • Asthmatics
  • People who are already sick or immune-compromised
  • Chemically sensitive individuals
  • The aged
  • Genetically susceptible individuals
  • Lower socioeconomic groups
  • Stressed individuals

… to list the obvious.

Asthmatics have particular sensitivities. Any chemicals, gases or particulates that cause irritation of the respiratory system’s mucous membranes will aggravate an asthmatic’s condition. Allergy-prone people who already show sensitivity to a substance with reactions such as sinusitis, hay fever, atopic eczema and other forms of atopic dermatitis are likely to react with heightened sensitivity to indoor air pollution. They may experience an aggravation of their allergies or develop additional sensitivities. The increasing number of people who suffer from 21st-century diseases such as chronic fatigue and multiple chemical sensitivities will also react to even very low levels of these chemicals.

Pregnant women, who may themselves enjoy robust health, are at risk because some of these contaminants pass over the placenta to the foetus. People under stress are more at risk because their immune systems are often not functioning at optimum levels. Other factors determining susceptibility include gender, genetic makeup, pre-existing health conditions and predisposition to disease, as well as lifestyle considerations such as work, diet and exercise.

There is little doubt that our kids have a greater susceptibility to toxic chemicals than we do. The younger they are, the more vulnerable they are. Every day we expose our children to hundreds of different chemicals in personal care and cosmetic products and yet remain puzzled as to why they get sick and why the rates of childhood asthma, allergies and cancer are higher than ever. Childhood leukaemia and brain tumours are leading causes of death of children in most developed countries and many studies are now showing a link between these conditions and increased toxic chemical exposure.

Read more →

Time to rethink what we put on our skins

Time to rethink what we put on our skins

Claiming our power as consumers means we need to challenge assumptions we have about these products, the companies that manufacture them and the government bodies that regulate them.

Common Consumer Fallacies

  • I can trust in the safety of the products I use.
  • The products I use do not affect my health.
  • Labels are accurate and consistent and list all of the chemical ingredients in the products I use.
  • The government adequately regulates these products and in the process protects me from chemicals known to harm my health.
  • I can trust the companies making the products I use because they put my health before dollars and cents.

If you believe any of the above statements, it is time to arm yourself with new knowledge. Next time you shop, take your awakened awareness and your new consumer power with you.

Know that:

  • Just because products are sold over the counter doesn’t mean they won’t harm you.
  • Just because these products aren’t making you sick right now doesn’t mean they aren’t affecting your health in the long term.
  • If products don’t have all the ingredients listed, the manufacturer isn’t giving you information that could affect your decisions and your health.
  • Current government legislation is incomplete and doesn’t protect you from a huge range of chemicals that are known to harm your health.
  • The cosmetics and personal care industry is first and foremost a business. It is driven by the principle of maximising economic gain. History confirms that profit-driven interests are likely to take precedence over safety and health considerations.

We also need to ask ourselves an essential question: “Can we consume less, rather than more?” It is well recognised that when tested, the majority of cosmetics and personal care products do not have the correct molecular weights, potency, or combinations of ingredients required to benefit the consumer in a measurable way. The gains are psychological—we feel better, feel more attractive or think we have greater sex appeal.

Simplifying your lifestyle can bring a better quality of life. Using fewer personal care products is one of the easiest (and the most economical) ways to reduce your exposure to chemicals. If you must buy certain products, after reading this book you will at least be able to choose those with lesser or lowest toxicity. And, once you know the facts, there are some products that you will choose not to use at all.

Read more →

200 scientists rally against triclosan in colgate toothpaste and cleaning products.

200 scientists rally against triclosan in colgate toothpaste and cleaning products.

Two hundred scientists any benefits of triclosan and triclocarban—used in some soaps, toothpastes, detergents, paints, carpets—are outweighed by the risk. While other studies and the FDA in the US say there is no benefit from using these ingredients over basic soap and cleaning products.

these two chemicals have been used for years without any definitive proof they’re providing benefits.
The compounds are used in an estimated 2,000 products but are being phased out of some uses. In February the EU banned triclosan in hygiene products. U.S. manufacturers are phasing out triclosan from hand soaps after the Food and Drug Administration banned it last year amid concerns that the compound disrupted the body's hormone systems.
And in Australia they are doing nothing.

However, just as worrying some manufactures of personal care products are simply substituting other antimicrobials for triclosan when they are not even needed.

The Florence Statement on Triclosan and Triclocarban

As scientists, medical doctors, and public health professionals, we are concerned about the continued widespread use of the chlorinated antimicrobials triclosan and triclocarban for the following reasons:

Triclosan and triclocarban are used as antimicrobials, a class of chemicals present in >2,000 products including soaps, toothpastes, detergents, clothing, toys, carpets, plastics, and paints. In personal care products like hand soap, there is no evidence that use of triclosan or triclocarban improves consumer or patient health or prevents disease.
Triclosan and triclocarban used in consumer products end up in the environment and have been detected in a wide variety of matrices worldwide.
Triclosan and triclocarban persist in the environment and are a source of toxic and carcinogenic compounds including dioxins, chloroform, and chlorinated anilines.
Triclosan, triclocarban, and their transformation products and byproducts bioaccumulate in aquatic plants and animals, and triclosan partitions into human blood and breast milk.
Triclosan and triclocarban have detrimental effects on aquatic organisms.
Humans are exposed to triclosan and triclocarban through direct contact with personal care products and from other sources including food, drinking water, and dust. Triclosan has been detected in the urine of a majority of humans tested.
Triclosan and triclocarban are endocrine disruptors and are associated with reproductive and developmental impacts in animal and in vitro studies. Potential implications for human reproduction and development are of concern and merit further study.
Human epidemiology and animal studies suggest triclosan exposure can increase sensitivity to allergens.
Overuse of triclosan may contribute to antibiotic/antimicrobial resistance and may modify the microbiome.
A number of authorities, including the FDA, have restricted the use of triclosan and triclocarban in certain types of soaps. These and other antimicrobial chemicals are generally not restricted from use in other products.

We therefore call on the international community to limit the production and use of triclosan and triclocarban and to question the use of other antimicrobials. We urge scientists, governments, chemical and product manufacturers, purchasing organizations, retailers, and consumers to take the actions recommended below.
Source
https://ehp.niehs.nih.gov/ehp1788/

Read more →

BPA linked with boys memory.

BPA linked with boys memory.

Bisphenol A (BPA) is a high-production-volume chemical that is used to produce polycarbonate plastics and resins used in some food can linings and other consumer products around the home and everyone is exposed predominantly from their diet.
There is growing evidence that prenatal BPA exposure increases the risk of neurobehavioral disorders in children. Some experimental studies in rodents suggest that prenatal BPA exposure is associated with behavior problems and that these effects may be sex-specific.
Prenatal exposure to BPA may increase the risk of neurobehavioral disorders by affecting thyroid or gonadal hormones or neurotransmitter systems, which are both necessary for proper brain development.
BPA may also affect the production or metabolism of gonadal hormones, which are an important determinant of sexually dimorphic brain development; thus, BPA may differentially affect neurodevelopment in males and females.
Several epidemiological studies have reported that maternal urinary BPA concentration during pregnancy is associated with adverse behavioral outcomes. In addition, some studies have reported that child sex modifies the association between BPA and neurobehavior. Studies in animals also show that gestational BPA exposure may affect specific aspects of cognition, such as memory and learning.
In this study increasing BPA concentrations in the mother at the birth of the child was associated with lower memory ability at 3 years of age but only in boys.

source
Environ Health Perspect; DOI:10.1289/EHP984
Associations of Prenatal Urinary Bisphenol A Concentrations with Child Behaviors and Cognitive Abilities
https://ehp.niehs.nih.gov/ehp984/

Read more →

Common household disinfectants linked with birth defects, miscarriages and fertility.

Common household disinfectants linked with birth defects, miscarriages and fertility.

Quaternary ammonium compounds (QACs) are antimicrobial disinfectants commonly used in commercial and household settings and everyone is virtually exposed to these chemicals every day. Two common quaternary ammonium compounds, alkyldimethylbenzyl ammonium chloride (ADBAC) and didecyldimethyl ammonium chloride (DDAC), are combined in common cleaners and disinfectants.

In this study introduction of a cleaner containing ADBAC+DDAC in the living chambers caused neural tube defects (NTDs) in mice and rats. They found increased neural tube defects with exposure to the disinfectant combination in both rats and mice. The neural tube defects persisted for two generations after cessation of exposure.

They also found that male exposure alone was sufficient to cause neural tube defects. Equally significant, ambient exposure from disinfectant use in the cage they were kept in, influenced the levels of neural tube defects to a greater extent than oral dosing. So the ambient exposure through the air and surfaces had more impact than the feeding.

These results clearly demonstrate that ADBAC+DDAC in combination are teratogenic (birth defects) to rodents. Given the increased use of these disinfectants, further evaluation of their safety in humans and their contribution to health and disease is essential.

Quaternary ammonium compounds (QACs) are a large class of chemicals used for their antimicrobial and antistatic properties. They are common ingredients in cleaners and disinfectants, hand wipes, food preservatives, swimming pool treatments, laundry products, shampoos, conditioners, eye drops, and other personal care products. QACs have been in use for over 60 years, but the number of products containing QACs has increased recently as the versatility of these compounds is recognized. Over time, the chemical structure has been altered to increase antimicrobial and surfactant efficacy resulting in multiple generations of these products. Many products now contain a combination of two or more QACs. Extensive use of QACs results in ubiquitous human exposure, yet reproductive toxicity has not been evaluated.

Because chemical mixtures can act synergistically to produce greater toxic effects than the sum of the individual components, evaluation of common mixtures is essential in the evaluation of chemical risk.

This study was initiated because some laboratories which breed and test with mice and rats had noticed some anomalies. One laboratory noted abrupt declines in mouse colony productivity, along with declines in fetal health, that coincided with the introduction of disinfectants containing the QACs, alkyl dimethyl benzyl ammonium chloride (ADBAC) and didecyl dimethyl ammonium chloride (DDAC). Several years later, the laboratory encountered breeding problems and neural tube birth defects (NTDs) that began shortly after a change in room disinfectants. These experiences pointed to the QAC disinfectant but could not confirm toxicity because neither incident tested QACs under experimental conditions.

In an earlier study by the same team reproductive studies demonstrated that QACs adversely affect both male and female fertility and fecundity in rodents (Melin et al., 2014, 2016). Decreased reproductive performance in laboratory mice coincided with the introduction of a disinfectant containing both alkyl dimethyl benzyl ammonium chloride (ADBAC) and didecyl dimethyl ammonium chloride (DDAC). QACs were detected in caging material over a period of several months following cessation of disinfectant use. Breeding pairs exposed for six months to a QAC disinfectant exhibited decreases in fertility and fecundity: increased time to first litter, longer pregnancy intervals, fewer pups per litter and fewer pregnancies. Significant morbidity in near term dams was also observed. In summary, exposure to a common QAC disinfectant mixture significantly impaired reproductive health in mice.

 

Source 1

Ambient and dosed exposure to quaternary ammonium disinfectants causes neural tube defects in rodents. Hrubec TC et al 15 June 2017. http://onlinelibrary.wiley.com/doi/10.1002/bdr2.1064/full

Source 2

Exposure to common quaternary ammonium disinfectants decreases fertility in mice.

Melin VE1, Potineni H1, Hunt P2, Griswold J2, Siems B3, Werre SR4, Hrubec TC5.Reprod Toxicol. 2014 Dec;50:163-70. doi: 10.1016/j.reprotox.2014.07.071. Epub 2014 Aug 14.

 

Read more →

Common household disinfectants linked with birth defects, miscarriages and fertility.

Common household disinfectants linked with birth defects, miscarriages and fertility.

Quaternary ammonium compounds (QACs) are antimicrobial disinfectants commonly used in commercial and household settings and everyone is virtually exposed to these chemicals every day. Two common quaternary ammonium compounds, alkyldimethylbenzyl ammonium chloride (ADBAC) and didecyldimethyl ammonium chloride (DDAC), are combined in common cleaners and disinfectants.

In this study introduction of a cleaner containing ADBAC+DDAC in the living chambers caused neural tube defects (NTDs) in mice and rats. They found increased neural tube defects with exposure to the disinfectant combination in both rats and mice. The neural tube defects persisted for two generations after cessation of exposure.

They also found that male exposure alone was sufficient to cause neural tube defects. Equally significant, ambient exposure from disinfectant use in the cage they were kept in, influenced the levels of neural tube defects to a greater extent than oral dosing. So the ambient exposure through the air and surfaces had more impact than the feeding.

These results clearly demonstrate that ADBAC+DDAC in combination are teratogenic (birth defects) to rodents. Given the increased use of these disinfectants, further evaluation of their safety in humans and their contribution to health and disease is essential.

Quaternary ammonium compounds (QACs) are a large class of chemicals used for their antimicrobial and antistatic properties. They are common ingredients in cleaners and disinfectants, hand wipes, food preservatives, swimming pool treatments, laundry products, shampoos, conditioners, eye drops, and other personal care products. QACs have been in use for over 60 years, but the number of products containing QACs has increased recently as the versatility of these compounds is recognized. Over time, the chemical structure has been altered to increase antimicrobial and surfactant efficacy resulting in multiple generations of these products. Many products now contain a combination of two or more QACs. Extensive use of QACs results in ubiquitous human exposure, yet reproductive toxicity has not been evaluated.

Because chemical mixtures can act synergistically to produce greater toxic effects than the sum of the individual components, evaluation of common mixtures is essential in the evaluation of chemical risk.

This study was initiated because some laboratories which breed and test with mice and rats had noticed some anomalies. One laboratory noted abrupt declines in mouse colony productivity, along with declines in fetal health, that coincided with the introduction of disinfectants containing the QACs, alkyl dimethyl benzyl ammonium chloride (ADBAC) and didecyl dimethyl ammonium chloride (DDAC). Several years later, the laboratory encountered breeding problems and neural tube birth defects (NTDs) that began shortly after a change in room disinfectants. These experiences pointed to the QAC disinfectant but could not confirm toxicity because neither incident tested QACs under experimental conditions.

In an earlier study by the same team reproductive studies demonstrated that QACs adversely affect both male and female fertility and fecundity in rodents (Melin et al., 2014, 2016). Decreased reproductive performance in laboratory mice coincided with the introduction of a disinfectant containing both alkyl dimethyl benzyl ammonium chloride (ADBAC) and didecyl dimethyl ammonium chloride (DDAC). QACs were detected in caging material over a period of several months following cessation of disinfectant use. Breeding pairs exposed for six months to a QAC disinfectant exhibited decreases in fertility and fecundity: increased time to first litter, longer pregnancy intervals, fewer pups per litter and fewer pregnancies. Significant morbidity in near term dams was also observed. In summary, exposure to a common QAC disinfectant mixture significantly impaired reproductive health in mice.

 

Source 1

Ambient and dosed exposure to quaternary ammonium disinfectants causes neural tube defects in rodents. Hrubec TC et al 15 June 2017. http://onlinelibrary.wiley.com/doi/10.1002/bdr2.1064/full

Source 2

Exposure to common quaternary ammonium disinfectants decreases fertility in mice.

Melin VE1, Potineni H1, Hunt P2, Griswold J2, Siems B3, Werre SR4, Hrubec TC5.Reprod Toxicol. 2014 Dec;50:163-70. doi: 10.1016/j.reprotox.2014.07.071. Epub 2014 Aug 14.

 

Read more →