Dr Dingle's Blog / reflux

Acid and your gut

Acid and your gut

After initial breakdown by chewing, food is churned by the smooth muscles of the stomach and is broken down by hyrdochlooric acid and stomach juices (enzymes). The pH of the stomach is highly acidic, around 1.5 (1.0-2.5) due to the hydrochloric acid which helps to kill harmful microorganisms, denature protein for digestion, and help create favorable conditions for the enzymes in the stomach juices such as pepsinogen (Adbi. 1976, Martinsen et al 2005). Not to mention sending messages along the GI tract that everything is working well in the stomach. If the pH is too high, say 3 or 4 (more alkaline) then the system does not work and you end up with digestive and health complications.

The small intestine is more alkaline as the acid contents from the stomach are neutralised so that digestion and adsorption of carbohydrates, proteins and fats can occur. As the mixed juices (chime) from the stomach moves into the small intestine, the pancreas secretes sodium bi carbonate and the gallbladder releases bile which is produced in the liver, to make it slightly alkali to a pH of 7 to 8. Bile salts play an important role in the balance of the gut microbiota and like the pH in the stomach are important in controlling disease microorganisms entry into our system.

Further breakdown of protein and fat takes place, and absorption of nutrients through the use of enzymes which break down complex molecules into simpler ones. However, all enzymes need certain conditions, including pH to work. At pH's that are not optimum, the enzyme becomes less efficient until it cannot work at all. In the small intestine, the enzymes that "work" there need an alkaline pH in order to have optimum working conditions. Inadequate acid neutralization in the small intestine likely interferes with nutrient absorption by diminishing further digestive enzyme activity (Borowitz et al 2015).

The more alkaline pH also favours the non-acid loving bifidobactria which produce short chain fatty acids (SCFA) such as acetic, propionic, and butyric acid, and hydrogen ions (Vernia et al 1988) which lower the pH of the food as it moves through to make it more acid, again for the more acid loving bacteria including lactobacilis species further down the large intestine. The large intestine absorbs water and salts, and stores the leftover material ready for excretion out of the anus is a little more acidic and favours the acidopholus species. The pH of the large intestine might go as low as 3.

The pH of the gut, right from the mouth to the anus is incredible important in determining the type of gut microbiota, gut health and your own health. In the stomach if it is not acid enough (no not too much acid) it sets of a chain of events that favours the wrong type of microbiota including helicobacteror and candida species known for causing stomach ulcers and other gut health problems as well as an overgrowth of lactobacillus which should not be there and lead to Stomach Bacterial Overgrowth (SBO). So optimal functioning of the gut relies on the optimal pH for that part of the GI tract. Even in the mouth if it is too acidic it favours lactobacteria, acid loving bacteria, which in the large intestine are really beneficial, but in the mouth contribute to tooth decay and periodontal disease. Similarly, if the pH in the small intestine is out of balance it contributes to an overgrowth of lactobacillus and a condition called Small Intestinal Bacterial Overgrowth (SIBO). It all comes down to the pH and getting it right from the start.

Read more →

Our Acid Stomach

Our Acid Stomach

The intestinal microbiome is a plastic ecosystem that is shaped by environmental and genetic factors, interacting with virtually all of our organs, tissues and cells. One of the most important factors in regulating and controlling our microbiome is the pH or acid level.

While often mentioned in terms of the stomach the pH has a controlling role to play in the health of the whole GI tract from the mouth to the anus and changes in the normalpH anywhere in the gut can have large implications on the rest of the GI tract. The pH scale goes from 1 being very acidic to 14 being very alkaline. The level in our blood and tissues should be constantly around 7.36, neutral and the level in our GI trace varies from 1 to 8. We cover this a lot more in our book Overcoming Illnesswhich focuses on the role of inflammation, oxidation and acidosis in illness.

After initial breakdown by chewing, food is churned by the smooth muscles of the stomach and is broken down by hydrochloric acid and stomach juices (enzymes). The pH of the stomach is highly acidic, around 1.5 (1.0-2.5) due to the hydrochloric acid which helps to kill harmful microorganisms, denature protein for digestion, and help create favorable conditions for the enzymes in the stomach juices such as pepsinogen.[1] Not to mention sending messages along the GI tract that everything is working well in the stomach. If the pH is too high, say 3 or 4 (more alkaline) then the system does not work and you end up with digestive and health complications. For example, premature infants have less acidic stomachs (pH more than 4) and as a result are susceptible to increased gut infections.[2] Similarly, the elderly show relatively low stomach acidity and a large number of people, more than 30%, over the age of 60 have very little or no Hydrochloric Acid in their stomachs.[3]

Similarly, in gastric bypass weight loss surgery, roughly 60 percent of the stomach is removed. A consequence of this procedure is an increase in gastric pH levels that range from 5.7 to 6.8 (not 1.5) to making it more alkaline and as a result are more likely to experience microbial overgrowth.[4] We see similar patterns in other clinical cases such as acid reflux in which treatment involves the use of proton-pump inhibitors[5] and celiac disease[6] where delayed gastric emptying is associated with reduced acidity and increased disease.

Unfortunately, acid reflux is often wrongly treated as a condition which involves the production of too much acid. It is in fact, the stomach finding it difficult to digest the foods, most commonly as a result not having enough acid to complete digestion and why medications (see later) which further reduce stomach acid have serious and deadly side effects on health, the digestive process and the gut microbiota. Acid reflux affects about 20% of the adult population and is much higher in older people which is consistent with the studies showing lower stomach acid as we age.

[1] Adbi. 1976; Martinsen et al., 2005.

[2] Carrion and Egan, 1990.

[3] Husebye et al., 1992.

[4] Machado et al., 2008.

[5] Amir et al., 2013.

[6] Usai et al., 1995.

Read more →

Gut Health and our Stomach pH.

Gut Health and our Stomach pH.

One of the most important factors in regulating our gut health, digestion and controlling our microbiome is the pH or acid level.

While often mentioned in terms of the stomach, the pH has a controlling role to play in the health of the entire GI tract from the mouth to the anus; changes in the “normal” pH anywhere in the gut can have major implications on the rest of the GI tract. The pH scale goes from 1, being very acidic, to 14, being very alkaline. The level in our blood and tissues should be constantly around 7.36, neutral, and the level in our GI tract varies from 1 to 8. We cover this a lot more in our book Overcoming Illness, which focuses on the role of inflammation, oxidation and acidosis in illness.

After initial breakdown by chewing, food is churned by the smooth muscles of the stomach and is broken down by hydrochloric acid and stomach juices (enzymes). The pH of the stomach is highly acidic, around 1.5 (1.0 to 2.5) due to the hydrochloric acid that helps to kill harmful micro-organisms, denature protein for digestion, and help create favourable conditions for the enzymes in the stomach juices, such as pepsinogen.[1] Not to mention sending messages along the GI tract that everything is working well in the stomach. If the pH is too high, say 3 or 4 (low acidity and more alkaline), then the system does not work and you end up with poor gut health, digestive and health complications. For example, premature infants have less acidic stomachs (pH more than 4) and as a result are susceptible to increased gut infections.[2] Similarly, the elderly show relatively low stomach acidity and a large number of people, more than 30%, over the age of 60 have very little or no hydrochloric acid in their stomachs.[3]

Similarly, in gastric bypass weight loss surgery, roughly 60% of the stomach is removed. A consequence of this procedure is an increase in gastric pH levels that range from 5.7 to 6.8 (not 1.5) making it more alkaline and, as a result, more likely to experience microbial overgrowth.[4] We see similar patterns in other clinical cases such as acid reflux in which treatment involves the use of proton-pump inhibitors[5] and celiac disease[6] where delayed gastric emptying is associated with reduced acidity and increased disease.

Unfortunately, acid reflux is often wrongly treated as a condition that involves the production of too much acid. It is, in fact, the stomach finding it difficult to digest the foods, most commonly as a result of not having enough acid to complete digestion. Medications (see my other posts) which further reduce stomach acid have serious and sometimes deadly side effects on health, the digestive process and the gut microbiota. Acid reflux affects about 20% of the adult population and is much higher in older people, which is consistent with studies showing lower stomach acid as we age.

 

[1] Adbi 1976; Martinsen et al., 2005.

[2] Carrion and Egan, 1990.

[3] Husebye et al., 1992.

[4] Machado et al., 2008.

[5] Amir et al., 2013.

[6] Usai et al., 1995.

Read more →

Gut Health Gut Healing an Modern Perspective

Gut Health Gut Healing an Modern Perspective

Arguable the biggest health problem facing us today is gut health rivaling the current obesity crisis and tobacco smoking in its impact on our health. Every health condition is linked to gut health and gut healing either directly or indirectly through inflammation and oxidation. Historically every culture understood this and were involved in extensive practices of gut healing and even our own up until 60 or so years ago. The first thing health practitioners throughout history would do is to start to fix the gut.

Until recently the positive effects of the gut microbiome on our digestive system and health has been severely under rated. Wisdom of Chinese doctors from centuries ago, who somehow knew that the intestines were not merely a digestive organ, but the centre of health and wellbeing. Hippocrates was recorded as saying that all illness begins in the gut. Throughout history from the Egyptians till around 80 years ago medicine and the bowels were frequently mentioned in the same sentence and good health revolved around gut health.

Even today the nomadic Maasai tribes in Africa attribute most illnesses to the effect of “pollutants” that block or inhibit digestion. In these communities the plants are used to cure diseases served mainly as strong purgatives and emetics; they "cleanse" the body and digestive system from polluting substances.

With thousands of studies released each year the gut is known to play a major role in many health conditions including mental health issues, cardiovascular disease, allergies and asthma, autoimmune diseases, some cancers and even diabetes and weight gain. Many of these conditions which are now reaching epidemic proportions have been linked to a dysfunctional gut. Studies have shown a strong link between mental health issues including depression and what is called the gut brain axis. We also know the gut is the centre of our immune system and is strongly influenced by the gut microbiome. As a result the gut has a strong link with allergies and asthma. Peanut allergies for example are not caused by peanuts they are brought about by a dysfunctional gut microbiome.

Antibiotics and many gut medications used for controlling acid reflux have been shown to be devastating to gut health a healthy gut microbiome, as well as many of the chemicals we use around the homes and even the personal care products we apply to our skin. Even our activities either promote gut health and gut healing or harm it. Stress sends messages to the opportunistic (bad) microorganisms in the gut to tell them to start to take over from the good ones. Exercise promotes gut health and healing while no exercise or too much exercise does the exact opposite.

Fortunately, in animal studies we know that many of these conditions can be improved and even reversed if the gut microbiome is repaired. 50% of Parkinson’s Disease has been directly linked with poor gut health while improving the gut microbiome has been shown to dramatically improve symptoms.

The research also shows that while probiotics can be useful in gut healing, repairing the gut microbiome requires an understanding of what encourages a healthy gut microbiome in our diet and lifestyle as well as what causes a dysfunctional microbiome. We now know that all the healthy foods we eat, the vegetables, nuts, seeds, herbs, spices and fruit all feed the gut microbiome which then feeds us and looks after our health. All the studies on healthy diets from the Mediterranean to the original Japanese or the low inflammatory diet (DII) benefit us because they work through the gut to promote gut health and subsequently our health.

Read more →