Dr Dingle's Blog / prevention

Our Acid Stomach

Our Acid Stomach

The intestinal microbiome is a plastic ecosystem that is shaped by environmental and genetic factors, interacting with virtually all of our organs, tissues and cells. One of the most important factors in regulating and controlling our microbiome is the pH or acid level.

While often mentioned in terms of the stomach the pH has a controlling role to play in the health of the whole GI tract from the mouth to the anus and changes in the normalpH anywhere in the gut can have large implications on the rest of the GI tract. The pH scale goes from 1 being very acidic to 14 being very alkaline. The level in our blood and tissues should be constantly around 7.36, neutral and the level in our GI trace varies from 1 to 8. We cover this a lot more in our book Overcoming Illnesswhich focuses on the role of inflammation, oxidation and acidosis in illness.

After initial breakdown by chewing, food is churned by the smooth muscles of the stomach and is broken down by hydrochloric acid and stomach juices (enzymes). The pH of the stomach is highly acidic, around 1.5 (1.0-2.5) due to the hydrochloric acid which helps to kill harmful microorganisms, denature protein for digestion, and help create favorable conditions for the enzymes in the stomach juices such as pepsinogen.[1] Not to mention sending messages along the GI tract that everything is working well in the stomach. If the pH is too high, say 3 or 4 (more alkaline) then the system does not work and you end up with digestive and health complications. For example, premature infants have less acidic stomachs (pH more than 4) and as a result are susceptible to increased gut infections.[2] Similarly, the elderly show relatively low stomach acidity and a large number of people, more than 30%, over the age of 60 have very little or no Hydrochloric Acid in their stomachs.[3]

Similarly, in gastric bypass weight loss surgery, roughly 60 percent of the stomach is removed. A consequence of this procedure is an increase in gastric pH levels that range from 5.7 to 6.8 (not 1.5) to making it more alkaline and as a result are more likely to experience microbial overgrowth.[4] We see similar patterns in other clinical cases such as acid reflux in which treatment involves the use of proton-pump inhibitors[5] and celiac disease[6] where delayed gastric emptying is associated with reduced acidity and increased disease.

Unfortunately, acid reflux is often wrongly treated as a condition which involves the production of too much acid. It is in fact, the stomach finding it difficult to digest the foods, most commonly as a result not having enough acid to complete digestion and why medications (see later) which further reduce stomach acid have serious and deadly side effects on health, the digestive process and the gut microbiota. Acid reflux affects about 20% of the adult population and is much higher in older people which is consistent with the studies showing lower stomach acid as we age.

[1] Adbi. 1976; Martinsen et al., 2005.

[2] Carrion and Egan, 1990.

[3] Husebye et al., 1992.

[4] Machado et al., 2008.

[5] Amir et al., 2013.

[6] Usai et al., 1995.

Read more →

The Health Benefits of Green Spaces

The Health Benefits of Green Spaces

Growing up as a child in the 60’s there was lots of space to play on the street, in the big back yards, nearby parks, creeks, the beach and lots of green spaces. While we we have lost a lot of these spaces research is showing that the more “green” we are surrounded with the the healthier it is for us. We exhibit more than just a preference for natural scenes and settings; we suffer health problems when we lose contact with our green surrounds. Increasing evidence indicates that nature provides restorative experiences that directly affect people's physical, social and mental well-being and health in a positive way including decreased mortality.

A recent study found that living in more densely vegetated areas was associated with fewer deaths from causes other than accidents. Using data from the Nurses’ Health Study researchers estimated a 12% lower rate of non-accidental death between women who lived in the most densely versus least densely vegetated areas. When looking at specific causes of death, the researchers estimated a 41% lower rate of kidney disease mortality, a 34% lower rate of respiratory disease mortality, and a 13% lower rate of cancer mortality in the women who lived in the greenest areas, compared with those in the least green areas. A study in the Netherlands found a lower prevalence of diseases in areas with more green space, including coronary heart disease and diabetes. In a cross-sectional study of 11,404 adults in Australia the odds of hospitalization for heart disease or stroke was 37% lower, and the odds of self-reported heart disease or stroke was 16% lower, among adults with highly variable greenness around their home, compared to those in neighborhoods with low variability in greenness. The odds of heart disease or stroke decreased by 7% per unit with every 25% increase in the level of greenness. In an interesting experiment where 14 children undertook two, 15 min bouts of cycling at a moderate exercise intensity while in one situation viewing a film of cycling in a forest setting and another with no visual stimulus. The systolic blood pressure (the top or higher number) 15 minutes after exercise was significantly lower following green exercise compared to the control condition. So if it works for kids it should also work for us we get older.

The rise in obesity is well documented and while there are many contributing factors a systematic review of green space research from sixty studies reported the majority (68%) of papers found a positive association between green spaces and obesity-related health indicators. One study found that increased vegetation was associated with reduced weight among young people living in high population densities and across eight European cities, people were 40% less likely to be obese in the greenest areas. Overall, the majority of studies found some evidence of a relationship with weight and green space. The lower rates of obesity, adverse health and improved health outcomes may be attributable to higher levels of physical activity, such as neighborhood walking which is positively influenced by the natural environment. Walking is the most popular physical activity particularly as we age, and levels of recreational walking have been linked the distance to and attractiveness of local parks and ovals.  Many studies have reported that adults with access to a large high-quality park within walking distance (within 1600 m) from home have elevated levels of walking and and in general live longer. In a review of 50 studies twenty studies (40%) reported a positive association between green space and physical activity, including older adults.

Being around vegetation can lead to better mental health and less stress, positive emotions, focus and attention, as well as reduced stress. While walking itself can reduce stress, walking in a natural setting provides greater stress-relieving benefits. Accessible green spaces are ‘escape facilities’, and lack of access to green space contributes to poor mental health. Some of the more potent restorative effects of nature relate to being able to ‘get away’ from everyday settings and immerse oneself in an extensive natural setting that creates a sense of being in a ‘whole other world’.

Perhaps as we decide to age healthier we need to spend more time near green spaces.

Read more →

The healing power of raw cabbage

The healing power of raw cabbage

Another reason to add some of the cabbage family to your daily diet, preferably raw is because of their gut healing properties and how they promote gut health through the gut microbiome. The Brassica family including cabbage, broccoli, brussel sprouts, kale, arugula (rocket), bok choy, cauliflower, collard greens, radish, turnip and others have been recognized for their gut healing and gut health properties for hundreds of years and modern epidemiologic studies have shown a frequent consumption of cruciferous vegetables is associated with lower risk of cancer, especially cancers of the digestive tract, bladder, breast, prostate, and lung. However, only now are we recognizing that many of these benefits are mediated through the microbiome and that their frequent consumption alters the composition of the microbiome.

Cruciferous vegetables are a rich source of glucosinolates a precursor to the Isothiocyanates (ITC), which exhibit powerful biological functions in fighting cancers, cardiovascular, neurodegenerative diseases and gut healing. The Isothiocyanates are a by product of specific plant enzymes (myrosinase) active during chewing or crushing when broccoli is consumed raw or lightly steamed, however, like all enzymes myrosinase is deactivated by cooking and ingestion of cooked broccoli typically provides only about one tenth the amount of isothiocyanates as that from raw broccoli. So to maximize the gut healing, gut health and overall benefits of these foods they are best eaten raw or just lightly steamed.

Instead when cooked cruciferous vegetables are consumed, gut bacteria are mainly responsible for ITC production in the gut. This is highlighted after taking oral antibiotics, the ITCs availability and uptake decreases after eating cooked cruciferous vegetable. It also appears that there is considerable difference in the ability of individuals, due to individual differences in gut microbial community, to produce the isothiocyanates. Although, the gut communitys ability is altered over just 4 days. In one study feeding raw or cooked broccoli for four days or longer both changed the microbiota composition and caused a greater production of isothiocyanates. Interestingly, a three-day withdrawal from broccoli reversed the increased microbial metabolites suggesting that the microbiota requires four or more days of broccoli consumption and is reversible.

The lactic acid bacteria appear to have myrosinase-like activity and the fermented Brassica food products, such as sauerkraut and kimchi, are particularly rich in Lactobacillus, and a diet rich in Brassica may promote Lactobacillus growth in the colon.

 

Read more →

Curcumin (turmeric)stops age and diet relted arterial damage

Curcumin (turmeric)stops age and diet relted arterial damage

Curcumin, a main component of natural turmeric (Curcuma longa Linn, Turmeric), is a type of polyphenol, which has long been used for curry spice, Chinese traditional herbal medicine, or in Japan, as food coloring for Japanese confectioneries.
Recent studies have shown that curcumin has different beneficial physiological activities in the body. Curcumin is known to have anti-oxidative and anti-inflammatory actions and anticancer action through multiple actions (cytostasis, induction of apoptosis, and anti-angiogenesis, anti-virus action, and cytoprotective).
Furthermore, curcumin is known to lower blood lipid (fat) levles, affecting various transcription factors that control gene expression involved in glucose and fat metabolism, and curcumin intake is expected to reduce different disorders caused by a high-fat diet (HFD).
In this study, they examined the effects of long-term administration of curcumin on artery aging and chronic inflammation—the causes of arteriosclerotic disease. in the high fat diet group oxidative stress increased with cell regulation in the arteries followed by increased dying cells and enhanced inflammation. While the group with curcumin added had suppression of oxidative stress and the arteries of mice at 80 weeks (old age) were the equivalent of those of the 8 week old mice in the experiment.
It seems curcumin has anti-ageing effects on our arteries which is why I supplement with it every day
Source. Curcumin Inhibits Age-Related Vascular Changes in Aged Mice Fed a High-Fat Diet.
https://www.mdpi.com/2072-6643/10/10/1476/htm
Read more →

Fasting reverses Type 2 diabetes

Fasting reverses Type 2 diabetes

Despite what we are often told the overwhelming evidence shows that Type 2 diabetes is a diet and lifestyle illness. It also shows that when you reverse the conditions that caused it the disease is also reversible.

Type 2 diabetes (T2D) is a chronic disease closely linked to the epidemic of obesity that requires long-term medical attention to limit the development of its wide range of complications. Many of these complications arise from the combination of resistance to insulin action, inadequate insulin secretion, and excessive or inappropriate glucagon secretion. Approximately 10% of the population of the USA and Canada have a diagnosis of T2D, and the morbidity and mortality rates associated with it are fairly high. The economic burden of T2D in the USA is $245 billion and around $20 billion in Australia.

This case documents three patients referred to the Intensive Dietary Management clinic in Toronto, Canada, for insulin-dependent type 2 diabetes. It demonstrates the effectiveness of therapeutic fasting to reverse their insulin resistance, resulting in cessation of insulin therapy while maintaining control of their blood sugars. In addition, these patients were also able to lose significant amounts of body weight, reduce their waist circumference and also reduce their glycated haemoglobin level.

These three cases exemplify that therapeutic fasting may reduce insulin requirements in T2D. Given the rising cost of insulin, patients may potentially save significant money. Further, the reduced need for syringes and blood glucose monitoring may reduce patient discomfort.

Therapeutic fasting has the potential to fill this gap in diabetes care by providing similar intensive caloric restriction and hormonal benefits as bariatric surgery without the invasive and dangerous surgery. During fasting periods, patients are allowed to drink unlimited amounts of very low-calorie fluids such as water, coffee, tea and bone broth. A general multivitamin supplement is encouraged to provide adequate micronutrients. Precise fasting schedules vary depending primarily on the patient’s preference, ranging from 16 hours to several days. On eating days, patients are encouraged to eat a diet low in sugar and refined carbohydrates, which decreases blood glucose and insulin secretion.

This means that patients with T2D can reverse their diseases without the worry of side effects and financial burden of many pharmaceuticals, as well as the unknown long-term risks and uncertainty of surgery, all by means of therapeutic fasting.

 

Source http://casereports.bmj.com/content/2018/bcr-2017-221854.full

Read more →

Depression caused by inflammation and oxidation. Not a serotonin imbalance

Depression caused by inflammation and oxidation. Not a serotonin imbalance

Depression itself is not a disease, but a symptom of an underlying problem. A new theory called the “Immune Cytokine Model of Depression” holds that depression is a “multifaceted sign of chronic immune system activation,” inflammation. Depression may be a symptom of chronic inflammation. And a large body of research now suggests that depression is associated with a low-grade, chronic inflammatory response and is accompanied by increased oxidative stress—not a serotonin imbalance.

Researchers discovered in the early 1980s that inflammatory cytokines produce a wide variety of psychiatric and neurological symptoms that perfectly mirror the defining characteristics of depression. Cytokines have been shown to access the brain and interact with virtually every mechanism known to be involved in depression[1] including neurotransmitter metabolism, neuroendocrine function, and neural plasticity.

This is now supported by increasing lines of scientific evidence[2] including:

  • Depression is often present in acute, inflammatory illnesses.
  • Higher levels of inflammation increase the risk of developing depression.
  • Administering endotoxins that provoke inflammation in healthy people triggers classic depressive symptoms.
  • One-quarter of patients who take interferon, a medication used to treat hepatitis C that causes significant inflammation, develop major depression.
  • Up to 50% of patients who received the cytokine IFN-alpha therapy to help treat cancer or infectious diseases developed “clinically significant depression.”[3]
  • An experiment involving the administration of a Salmonella typhi vaccine to healthy individuals produced symptoms of fatigue, mental confusion, psychomotor slowing and a depressed mood.[4] These symptoms correlated with the increase in cytokine concentrations.
  • Remission of clinical depression is often associated with a normalization of inflammatory markers.
  • There is now a large body of literature regarding laboratory animals demonstrating that cytokines … can lead to a host of behavioural changes overlapping with those found in depression. These behavioral changes include decreased activity, cognitive dysfunction and altered sleep.[5]
  • All the activities associated with reducing the prevalence of depression and depression symptoms are anti-inflammatory. These include increased sunlight and time spent outside, exercise and physical activity, relaxation and meditation techniques, healthy eating as well as administering anti-inflammatory nutritionals.

There is further support from large epidemiological studies. A number of longitudinal studies have now shown that inflammation in early adulthood predicts depression at a later stage in life. In a large longitudinal study, the risk for depression and psychotic experiences in adolescence was almost two-fold higher in individuals with the highest compared to the lowest levels of inflammation as indicated by interleukin-6 (IL-6) levels in childhood. Children who were in the top third of IL-6 levels at the age of 9 years were 55% more likely to be diagnosed with depression at the age of 18 than those with the lowest childhood levels of IL-6. Children in the highest level of IL-6 levels at the age of 9 were also 81% more likely to report psychotic experiences at the age of 18.[6] A study of more than 73,000 men and women showed increasing inflammation levels were associated with increasing risk for psychological distress and depression. Increasing inflammation (CRP) levels were also associated with increasing risk for hospitalization with depression.[7]

In support of the inflammation depression link, recent studies have found a significant link between the dietary inflammatory index (DII) and risk of depression. In an Australian study of 6,438 middle-aged women, those with the most anti-inflammatory diet had an approximately 26% lower risk of developing depression compared with women with the most pro-inflammatory diet.[8] Similarly, a study in the UK examined the DII and recurrent depressive symptoms over five years in 3,178 middle-aged men and 1,068 women. Researchers found that for each increment of 1 level of DII score (increased inflammation), odds of depression increased by 66% in women, whereas in men the risk increased by only 12%.[9] In a study of 15,093 university graduates in Spain, those on the highest DII (strongly pro-inflammatory diet) had a 47% risk of depression compared with those in the bottom, with a significant dose-response relationship, which means as the diet became more inflammatory it increased the risk of depression. Further analysis also showed the association between DII (the inflammatory diet) and depression was stronger among participants older than 55 years, with an increased risk of 270% and those with cardiometabolic comorbidities (high blood pressure, diabetes, etc.) had an 80% increased risk of depression.[10] In a study of 43,685 women (aged 50–77) without depression at baseline, the risk of developing depression was 41% higher if they were on the highest compared to the lowest Dietary Inflammatory Index diet.[11]

Oxidative stress is closely related to the inflammatory pathway in particular. Pro-inflammatory cytokines are produced in reaction to oxidative stress and oxidative stress in turn amplifies the inflammatory response. High cortisol levels have been associated with increased levels of oxidative damage.[12] Depression has been associated with increased oxidative stress and increased severity of depression is associated with increased systemic oxidatively generated DNA and RNA damage.[13] Severe depression is associated with increased systemic oxidatively generated RNA damage, which may be an additional factor underlying the somatic morbidity and neurodegenerative features associated with depression. In a meta-analysis, 1,308 subjects depressed persons had increased oxidative stress and decreased anti-oxidant defences (as measured by 8-OHdG and F2-isoprostanes).[14] The results indicate that depression is associated with increased oxidative damage to DNA and lipids. The brain is particularly vulnerable to oxidative damage due to its high oxygen consumption and low antioxidant defences. Sustained oxidative brain damage during a depressive episode may make a sufferer prone to developing another depressive episode. Therefore, it has been hypothesized that exposure to oxidative stress could be an explanatory mechanism in the remitting and chronic course of depressive disorders.[15] There is also evidence from post-mortem studies suggesting that in depression oxidative stress is increased[16] and antioxidants are decreased[17] in the brain.

A study of 37 patients with bipolar disorder showed that bipolar disorder is associated with increased oxidatively generated damage to nucleosides, which could be contributing to the increased risk of medical disorders, shortened life expectancy, and the progressive course of illness observed in bipolar disorder.[18] Another study showed increased oxidative stress as indicated by increased nitric oxide (NO) and lipid peroxidation, measured by thiobarbituric acidic reactive substance (TBARS) assay in patients with bipolar disorder.[19]

There is evidence suggesting that antioxidants are decreased in depression, illustrated by lower antioxidant levels,[20] including carotenoids,[21] and antioxidant enzymes.[22] There is some evidence to suggest that antidepressants have antioxidant properties and may act through reducing pro-inflammatory cytokines and ROS production and improving levels of antioxidants such as superoxide dismutase.[23]

 

[1] Miller et al. 2009.

[2] Berk et al. 2011.

[3] Miller 2009.

[4] Brydon et al. 2008.

[5] Dantzer et al. 2008.

[6] JAMA Psychiatry 13, 2014.

[7] Wium-Anderson et al. 2013.

[8] Nitin Shivappa et al. 2016 British Journal of Nutrition.

[9] Akbaraly et al. Clinical Psychological Science 2016.

[10] Sanchez-Villegas A et al. British Journal of Nutrition 2015.

[11] Lucas et al. 2014.

[12] Joergensen et al. 2011.

[13] Jorgensen et al. 2013; Pandya et al. 2013.

[14] Black et al. 2014; Palta et al. 2014.

[15] Moylan et al. 2013.

[16] Wange et al. 2009; Michel et al. 2012.

[17] Gawryluk et al. 2011.

[18] Munkholm et al. 2015.

[19] Andreazza et al. 2008.

[20] Palta et al. 2014.

[21] Milaneschi et al. 2012.

[22] Sarandol et al. 2007.

[23] Khanzode et al. 2003; Lee et al. 2013.

Read more →

Gut health impacts all health conditions

Gut health impacts all health conditions

Your gut microbiome has an astonishing ability to keep you healthy or ill. The list of diseases that we know of that are linked to the intestinal microbiota grows every day and these diseases are usually complex in terms of both how the disease develops and complications. Having the right balance of good microorganisms in our gut and good gut health is not only essential for good digestion but also in the prevention of or reversing chronic diseases, including.

Poor gut health has been linked with a long list of illnesses including

ADHD

Autism

Asthma and Allergies

Alzheimer’s

Parkinson’s

Multiple sclerosis

Arthritis

Cancers (especially digestive cancers, i.e. bowel and colon and brain tumours)

Inflammatory Bowel Disease including SIBO, Crohn’s and Ulcerative colitis

Metabolic health

Metabolic syndrome

Cardio vascular disease

High blood pressure

Weight Loss

Diabetes 2

Diabetes 1

Depression, Anxiety and Stress

Skin health and ageing

Eczema, Dermatitis and Psoriasis

Immune system function including susceptibility and tolerance to viruses and bacterial infections like cold and flu.

Colic, Constipation and Diarrhea

Celiac disease and Gluten and lactose intolerance

Liver disease

Dental Health

 

The list goes on. For example, even in the area of mental illness we have conditions such as

Depression, Anxiety and Stress

Bipolar,

Schizophrenia

ADHD & Autism

Focus and memory

Learning, mental productivity and cognitive decline. As well as controlling some of our needs and desires i.e. food cravings and appetite, our relationships and our social interactions.

These are all impacted by gut health. Because of the role of inflammation, oxidation nutrition and the many functions of the gut microbiome there is not a health condition that is not influenced by the gut microbiome either directly or indirectly.

Because of the multiple functions of the microbiota dysbiosis can manifest as many and multiple health conditions often termed comormidity or multi morbidity. It is not one disease it manifests as many. For example, large studies have shown the multi-morbidity of eczema, rhinitis, and asthma. Inflammatory Bowel Disease (IBD) patients will also frequently suffer from rheumatologic manifestations, liver multimorbidities and lung, namely chronic obstructive pulmonary disease and bronchial asthma, bronchitis and other chronic respiratory disorders in the adult population, gallbladder disease, heart disease and associated morbidity and mortality, anxiety, stress and depression, as well as arthritis, psoriasis, and pericarditis. In one study of 47325 patients they reported 20 different immune mediate diseases associated with IBD including some of those mentioned above and celiac disease, type 1 diabetes, rheumatoid arthritis, and ankylosing spondylitis.

This evidence strongly shows any health condition will have many layers of disease occurring throughout the body at any one time that are related but not connected at the time of diagnosis.

 

Read more →

Lifestyle changes can add 14 years or more to your life. Not drugs

Lifestyle changes can add 14 years or more to your life. Not drugs

Americans have a shorter life expectancy compared with residents of almost all other high-income countries despite the fact that they spend more money on their health care (pharmaceuticals) than any other country.

In this study adopting five major health initiatives—regular exercise, a healthy diet, moderate drinking, not getting overweight or obese and not smoking can extend your life by around 14 years. Each of the healthy lifestyles lowers your chances of getting one of the chronic health problems, such as heart disease and cancer.

This study shows that healthier lifestyles would reduce the rate of premature death from heart disease by 75 per cent, and cancer deaths by 50 per cent, the researchers estimate.

This study yet again highlights the need to focus on lifestyle and diet and not on the pharmaceutical model of health. While there is consistent evidence showing their role in extending life and the quality of life there is virtually no evidence to show pharmaceuticals extend life. However roughly 50% of the lobbyists in the capitals are from pharmaceutical companies.

https://www.drdingle.com/collections/book-sales/products/overcoming-illness-pre-order

Source

Impact of Healthy Lifestyle Factors on Life Expectancies in the US Population.

http://circ.ahajournals.org/content/early/2018/04/25/CIRCULATIONAHA.117.032047

 

Read more →

Our society is the sickest it has ever been

Our society is the sickest it has ever been


Read more →

Low vitamin D linked with stroke

Low vitamin D linked with stroke

In recent years, more and more evidence shows that lower vitamin D status is associated with several known risk factors of stroke. This study undertook a systematic review and a meta-analysis of Nineteen previous studies and found a between a 62 and 145% increased risk of stroke for people with the lowest Vitamin D levels.
So go out and get some more sun and some rich fatty vitamin D rich foods. Vitamin D is a fat soluble vitamin.
Stroke is the second leading cause of death among people aged 60 years and above, and is causing a substantial global disease burden. Based on the global burden disease (GBD) 2013 study, about 6.5 million people died from stroke and 10.3 million people suffered a stroke in 2013. That is a lot. China had about 2.4 million incidences of stroke each year and bore the heaviest burden of stroke across the world. Other factors include hypertension, diabetes, obesity, and tobacco use.
Vitamin D, which is classically known as a protective factor in bone metabolism, in recent years has been reported to play a vital role in cardiovascular health.
Some evidence also supported the hypothesis that low vitamin D intake may function as a predictor of long-term incidence of stroke
Source
http://www.mdpi.com/2072-6643/10/3/277/htm
Read more →