Dr Dingle's Blog / nutrition

Curcumin (turmeric)stops age and diet relted arterial damage

Curcumin (turmeric)stops age and diet relted arterial damage

Curcumin, a main component of natural turmeric (Curcuma longa Linn, Turmeric), is a type of polyphenol, which has long been used for curry spice, Chinese traditional herbal medicine, or in Japan, as food coloring for Japanese confectioneries.
Recent studies have shown that curcumin has different beneficial physiological activities in the body. Curcumin is known to have anti-oxidative and anti-inflammatory actions and anticancer action through multiple actions (cytostasis, induction of apoptosis, and anti-angiogenesis, anti-virus action, and cytoprotective).
Furthermore, curcumin is known to lower blood lipid (fat) levles, affecting various transcription factors that control gene expression involved in glucose and fat metabolism, and curcumin intake is expected to reduce different disorders caused by a high-fat diet (HFD).
In this study, they examined the effects of long-term administration of curcumin on artery aging and chronic inflammation—the causes of arteriosclerotic disease. in the high fat diet group oxidative stress increased with cell regulation in the arteries followed by increased dying cells and enhanced inflammation. While the group with curcumin added had suppression of oxidative stress and the arteries of mice at 80 weeks (old age) were the equivalent of those of the 8 week old mice in the experiment.
It seems curcumin has anti-ageing effects on our arteries which is why I supplement with it every day
Source. Curcumin Inhibits Age-Related Vascular Changes in Aged Mice Fed a High-Fat Diet.
https://www.mdpi.com/2072-6643/10/10/1476/htm
Read more →

Fasting reverses Type 2 diabetes

Fasting reverses Type 2 diabetes

Despite what we are often told the overwhelming evidence shows that Type 2 diabetes is a diet and lifestyle illness. It also shows that when you reverse the conditions that caused it the disease is also reversible.

Type 2 diabetes (T2D) is a chronic disease closely linked to the epidemic of obesity that requires long-term medical attention to limit the development of its wide range of complications. Many of these complications arise from the combination of resistance to insulin action, inadequate insulin secretion, and excessive or inappropriate glucagon secretion. Approximately 10% of the population of the USA and Canada have a diagnosis of T2D, and the morbidity and mortality rates associated with it are fairly high. The economic burden of T2D in the USA is $245 billion and around $20 billion in Australia.

This case documents three patients referred to the Intensive Dietary Management clinic in Toronto, Canada, for insulin-dependent type 2 diabetes. It demonstrates the effectiveness of therapeutic fasting to reverse their insulin resistance, resulting in cessation of insulin therapy while maintaining control of their blood sugars. In addition, these patients were also able to lose significant amounts of body weight, reduce their waist circumference and also reduce their glycated haemoglobin level.

These three cases exemplify that therapeutic fasting may reduce insulin requirements in T2D. Given the rising cost of insulin, patients may potentially save significant money. Further, the reduced need for syringes and blood glucose monitoring may reduce patient discomfort.

Therapeutic fasting has the potential to fill this gap in diabetes care by providing similar intensive caloric restriction and hormonal benefits as bariatric surgery without the invasive and dangerous surgery. During fasting periods, patients are allowed to drink unlimited amounts of very low-calorie fluids such as water, coffee, tea and bone broth. A general multivitamin supplement is encouraged to provide adequate micronutrients. Precise fasting schedules vary depending primarily on the patient’s preference, ranging from 16 hours to several days. On eating days, patients are encouraged to eat a diet low in sugar and refined carbohydrates, which decreases blood glucose and insulin secretion.

This means that patients with T2D can reverse their diseases without the worry of side effects and financial burden of many pharmaceuticals, as well as the unknown long-term risks and uncertainty of surgery, all by means of therapeutic fasting.

 

Source http://casereports.bmj.com/content/2018/bcr-2017-221854.full

Read more →

Depression caused by inflammation and oxidation. Not a serotonin imbalance

Depression caused by inflammation and oxidation. Not a serotonin imbalance

Depression itself is not a disease, but a symptom of an underlying problem. A new theory called the “Immune Cytokine Model of Depression” holds that depression is a “multifaceted sign of chronic immune system activation,” inflammation. Depression may be a symptom of chronic inflammation. And a large body of research now suggests that depression is associated with a low-grade, chronic inflammatory response and is accompanied by increased oxidative stress—not a serotonin imbalance.

Researchers discovered in the early 1980s that inflammatory cytokines produce a wide variety of psychiatric and neurological symptoms that perfectly mirror the defining characteristics of depression. Cytokines have been shown to access the brain and interact with virtually every mechanism known to be involved in depression[1] including neurotransmitter metabolism, neuroendocrine function, and neural plasticity.

This is now supported by increasing lines of scientific evidence[2] including:

  • Depression is often present in acute, inflammatory illnesses.
  • Higher levels of inflammation increase the risk of developing depression.
  • Administering endotoxins that provoke inflammation in healthy people triggers classic depressive symptoms.
  • One-quarter of patients who take interferon, a medication used to treat hepatitis C that causes significant inflammation, develop major depression.
  • Up to 50% of patients who received the cytokine IFN-alpha therapy to help treat cancer or infectious diseases developed “clinically significant depression.”[3]
  • An experiment involving the administration of a Salmonella typhi vaccine to healthy individuals produced symptoms of fatigue, mental confusion, psychomotor slowing and a depressed mood.[4] These symptoms correlated with the increase in cytokine concentrations.
  • Remission of clinical depression is often associated with a normalization of inflammatory markers.
  • There is now a large body of literature regarding laboratory animals demonstrating that cytokines … can lead to a host of behavioural changes overlapping with those found in depression. These behavioral changes include decreased activity, cognitive dysfunction and altered sleep.[5]
  • All the activities associated with reducing the prevalence of depression and depression symptoms are anti-inflammatory. These include increased sunlight and time spent outside, exercise and physical activity, relaxation and meditation techniques, healthy eating as well as administering anti-inflammatory nutritionals.

There is further support from large epidemiological studies. A number of longitudinal studies have now shown that inflammation in early adulthood predicts depression at a later stage in life. In a large longitudinal study, the risk for depression and psychotic experiences in adolescence was almost two-fold higher in individuals with the highest compared to the lowest levels of inflammation as indicated by interleukin-6 (IL-6) levels in childhood. Children who were in the top third of IL-6 levels at the age of 9 years were 55% more likely to be diagnosed with depression at the age of 18 than those with the lowest childhood levels of IL-6. Children in the highest level of IL-6 levels at the age of 9 were also 81% more likely to report psychotic experiences at the age of 18.[6] A study of more than 73,000 men and women showed increasing inflammation levels were associated with increasing risk for psychological distress and depression. Increasing inflammation (CRP) levels were also associated with increasing risk for hospitalization with depression.[7]

In support of the inflammation depression link, recent studies have found a significant link between the dietary inflammatory index (DII) and risk of depression. In an Australian study of 6,438 middle-aged women, those with the most anti-inflammatory diet had an approximately 26% lower risk of developing depression compared with women with the most pro-inflammatory diet.[8] Similarly, a study in the UK examined the DII and recurrent depressive symptoms over five years in 3,178 middle-aged men and 1,068 women. Researchers found that for each increment of 1 level of DII score (increased inflammation), odds of depression increased by 66% in women, whereas in men the risk increased by only 12%.[9] In a study of 15,093 university graduates in Spain, those on the highest DII (strongly pro-inflammatory diet) had a 47% risk of depression compared with those in the bottom, with a significant dose-response relationship, which means as the diet became more inflammatory it increased the risk of depression. Further analysis also showed the association between DII (the inflammatory diet) and depression was stronger among participants older than 55 years, with an increased risk of 270% and those with cardiometabolic comorbidities (high blood pressure, diabetes, etc.) had an 80% increased risk of depression.[10] In a study of 43,685 women (aged 50–77) without depression at baseline, the risk of developing depression was 41% higher if they were on the highest compared to the lowest Dietary Inflammatory Index diet.[11]

Oxidative stress is closely related to the inflammatory pathway in particular. Pro-inflammatory cytokines are produced in reaction to oxidative stress and oxidative stress in turn amplifies the inflammatory response. High cortisol levels have been associated with increased levels of oxidative damage.[12] Depression has been associated with increased oxidative stress and increased severity of depression is associated with increased systemic oxidatively generated DNA and RNA damage.[13] Severe depression is associated with increased systemic oxidatively generated RNA damage, which may be an additional factor underlying the somatic morbidity and neurodegenerative features associated with depression. In a meta-analysis, 1,308 subjects depressed persons had increased oxidative stress and decreased anti-oxidant defences (as measured by 8-OHdG and F2-isoprostanes).[14] The results indicate that depression is associated with increased oxidative damage to DNA and lipids. The brain is particularly vulnerable to oxidative damage due to its high oxygen consumption and low antioxidant defences. Sustained oxidative brain damage during a depressive episode may make a sufferer prone to developing another depressive episode. Therefore, it has been hypothesized that exposure to oxidative stress could be an explanatory mechanism in the remitting and chronic course of depressive disorders.[15] There is also evidence from post-mortem studies suggesting that in depression oxidative stress is increased[16] and antioxidants are decreased[17] in the brain.

A study of 37 patients with bipolar disorder showed that bipolar disorder is associated with increased oxidatively generated damage to nucleosides, which could be contributing to the increased risk of medical disorders, shortened life expectancy, and the progressive course of illness observed in bipolar disorder.[18] Another study showed increased oxidative stress as indicated by increased nitric oxide (NO) and lipid peroxidation, measured by thiobarbituric acidic reactive substance (TBARS) assay in patients with bipolar disorder.[19]

There is evidence suggesting that antioxidants are decreased in depression, illustrated by lower antioxidant levels,[20] including carotenoids,[21] and antioxidant enzymes.[22] There is some evidence to suggest that antidepressants have antioxidant properties and may act through reducing pro-inflammatory cytokines and ROS production and improving levels of antioxidants such as superoxide dismutase.[23]

 

[1] Miller et al. 2009.

[2] Berk et al. 2011.

[3] Miller 2009.

[4] Brydon et al. 2008.

[5] Dantzer et al. 2008.

[6] JAMA Psychiatry 13, 2014.

[7] Wium-Anderson et al. 2013.

[8] Nitin Shivappa et al. 2016 British Journal of Nutrition.

[9] Akbaraly et al. Clinical Psychological Science 2016.

[10] Sanchez-Villegas A et al. British Journal of Nutrition 2015.

[11] Lucas et al. 2014.

[12] Joergensen et al. 2011.

[13] Jorgensen et al. 2013; Pandya et al. 2013.

[14] Black et al. 2014; Palta et al. 2014.

[15] Moylan et al. 2013.

[16] Wange et al. 2009; Michel et al. 2012.

[17] Gawryluk et al. 2011.

[18] Munkholm et al. 2015.

[19] Andreazza et al. 2008.

[20] Palta et al. 2014.

[21] Milaneschi et al. 2012.

[22] Sarandol et al. 2007.

[23] Khanzode et al. 2003; Lee et al. 2013.

Read more →

Gut health, gut integrity and your health

Gut health, gut integrity and your health

The integrity of our gut and our gut health is so important to our health but has largely been ignored until recently. The mucous membrane absorbs and assimilates foods and serves as a barrier to pathogens and other toxic substances. When this integrity is compromised the permeability of the gut may be altered, gut function erodes and we end up with many health conditions associated with inflammation and leaky gut.

The gut lining is composed of close fitting, thin cells separated by tight junctures, like a thin protein mortar. When the barrier is disrupted the intestines permeability increases allowing larger particles, bacteria, undigested foods or toxins to cross the barrier. This intestinal permeability, called leaky Gut, is linked with virtually all the gut related disorders including ulcerative colitis, Crohn’s disease, celiacs disease, and auto immune conditions including inflammatory joint disease, ankylosing spondylitis, juvenile onset arthritis, psoriatic arthritis, diabetes mellitus type one and primary biliary cirrhosis.

To maintain integrity and normal function of intestine, a delicate equilibrium must be reached between the microbiota and intestinal immune system.[1] In a healthy body the immune system protects us against invasion and controls the commensal microorganisms. In return the beneficial bacteria provide essential nutrients to the gut cells and promote healthy immune responses in the gut.

A healthy microbiome contributes to the maintenance of intestinal epithelium barrier integrity maintaining the tight junctures, promoting intestinal cell repair, and even ensuring a healthy rate of cell turnover. It does this by maintenance of local cell nutrition and circulation and protection against pathogenic microorganisms.

Unlike most other cells in the body that get their energy and nutrients from the blood supply, more than 50% of the energy needs of the small intestine and more than 80% of the energy of the large intestines (where most of our microbiome is) comes directly from the food in the gut. This is not just a one off but with each turning over of gut cells which is over a period of just days, the barrier has to be continually re-established. The end result of this mutually beneficial co-habitation is a symbiotic relationship between the two partners, us and our microbiome. Any change in the relative proportions of the different bacteria alters the subsequent nutrients available and maintenance and protection for the digestive tract. If the right food and conditions are not there for a healthy microbiome then the nutrients are not available for the gut wall and the cells are damaged leading to damage to the integrity of the gut wall and leaky gut. This highlights the importance of eating the right foods for the microbiome to do their job and to maintain optimal gut health.

[1] Magalhaes et al., 2007.

Read more →

The gut healing and gut health power of raw cabbage

The gut healing and gut health power of raw cabbage

Another reason to add some of the cabbage family to your daily diet, preferably raw is because of their gut healing properties and how they promote gut health through the gut microbiome. The Brassica family including cabbage, broccoli, brussel sprouts, kale, arugula (rocket), bok choy, cauliflower, collard greens, radish, turnip and others have been recognized for their gut healing and gut health properties for hundreds of years and modern epidemiologic studies have shown a frequent consumption of cruciferous vegetables is associated with lower risk of cancer, especially cancers of the digestive tract, bladder, breast, prostate, and lung. However, only now are we recognizing that many of these benefits are mediated through the microbiome and that their frequent consumption alters the composition of the microbiome.

Cruciferous vegetables are a rich source of glucosinolates a precursor to the Isothiocyanates (ITC), which exhibit powerful biological functions in fighting cancers, cardiovascular, neurodegenerative diseases and gut healing. The Isothiocyanates are a by product of specific plant enzymes (myrosinase) active during chewing or crushing when broccoli is consumed raw or lightly steamed, however, like all enzymes myrosinase is deactivated by cooking and ingestion of cooked broccoli typically provides only about one tenth the amount of isothiocyanates as that from raw broccoli. So to maximize the gut healing, gut health and overall benefits of these foods they are best eaten raw or just lightly steamed.

Instead when cooked cruciferous vegetables are consumed, gut bacteria are mainly responsible for ITC production in the gut. This is highlighted after taking oral antibiotics, the ITC’s availability and uptake decreases after eating cooked cruciferous vegetable. It also appears that there is considerable difference in the ability of individuals, due to individual differences in gut microbial community, to produce the isothiocyanates. Although, the gut community’s ability is altered over just 4 days. In one study feeding raw or cooked broccoli for four days or longer both changed the microbiota composition and caused a greater production of isothiocyanates. Interestingly, a three-day withdrawal from broccoli reversed the increased microbial metabolites suggesting that the microbiota requires four or more days of broccoli consumption and is reversible.

The lactic acid bacteria appear to have myrosinase-like activity and the fermented Brassica food products, such as sauerkraut and kimchi, are particularly rich in Lactobacillus, and a diet rich in Brassica may promote Lactobacillus growth in the colon.

Read more →

Gut health impacts all health conditions

Gut health impacts all health conditions

Your gut microbiome has an astonishing ability to keep you healthy or ill. The list of diseases that we know of that are linked to the intestinal microbiota grows every day and these diseases are usually complex in terms of both how the disease develops and complications. Having the right balance of good microorganisms in our gut and good gut health is not only essential for good digestion but also in the prevention of or reversing chronic diseases, including.

Poor gut health has been linked with a long list of illnesses including

ADHD

Autism

Asthma and Allergies

Alzheimer’s

Parkinson’s

Multiple sclerosis

Arthritis

Cancers (especially digestive cancers, i.e. bowel and colon and brain tumours)

Inflammatory Bowel Disease including SIBO, Crohn’s and Ulcerative colitis

Metabolic health

Metabolic syndrome

Cardio vascular disease

High blood pressure

Weight Loss

Diabetes 2

Diabetes 1

Depression, Anxiety and Stress

Skin health and ageing

Eczema, Dermatitis and Psoriasis

Immune system function including susceptibility and tolerance to viruses and bacterial infections like cold and flu.

Colic, Constipation and Diarrhea

Celiac disease and Gluten and lactose intolerance

Liver disease

Dental Health

 

The list goes on. For example, even in the area of mental illness we have conditions such as

Depression, Anxiety and Stress

Bipolar,

Schizophrenia

ADHD & Autism

Focus and memory

Learning, mental productivity and cognitive decline. As well as controlling some of our needs and desires i.e. food cravings and appetite, our relationships and our social interactions.

These are all impacted by gut health. Because of the role of inflammation, oxidation nutrition and the many functions of the gut microbiome there is not a health condition that is not influenced by the gut microbiome either directly or indirectly.

Because of the multiple functions of the microbiota dysbiosis can manifest as many and multiple health conditions often termed comormidity or multi morbidity. It is not one disease it manifests as many. For example, large studies have shown the multi-morbidity of eczema, rhinitis, and asthma. Inflammatory Bowel Disease (IBD) patients will also frequently suffer from rheumatologic manifestations, liver multimorbidities and lung, namely chronic obstructive pulmonary disease and bronchial asthma, bronchitis and other chronic respiratory disorders in the adult population, gallbladder disease, heart disease and associated morbidity and mortality, anxiety, stress and depression, as well as arthritis, psoriasis, and pericarditis. In one study of 47325 patients they reported 20 different immune mediate diseases associated with IBD including some of those mentioned above and celiac disease, type 1 diabetes, rheumatoid arthritis, and ankylosing spondylitis.

This evidence strongly shows any health condition will have many layers of disease occurring throughout the body at any one time that are related but not connected at the time of diagnosis.

 

Read more →

Gut Health Gut Healing an Modern Perspective

Gut Health Gut Healing an Modern Perspective

Arguable the biggest health problem facing us today is gut health rivaling the current obesity crisis and tobacco smoking in its impact on our health. Every health condition is linked to gut health and gut healing either directly or indirectly through inflammation and oxidation. Historically every culture understood this and were involved in extensive practices of gut healing and even our own up until 60 or so years ago. The first thing health practitioners throughout history would do is to start to fix the gut.

Until recently the positive effects of the gut microbiome on our digestive system and health has been severely under rated. Wisdom of Chinese doctors from centuries ago, who somehow knew that the intestines were not merely a digestive organ, but the centre of health and wellbeing. Hippocrates was recorded as saying that all illness begins in the gut. Throughout history from the Egyptians till around 80 years ago medicine and the bowels were frequently mentioned in the same sentence and good health revolved around gut health.

Even today the nomadic Maasai tribes in Africa attribute most illnesses to the effect of “pollutants” that block or inhibit digestion. In these communities the plants are used to cure diseases served mainly as strong purgatives and emetics; they "cleanse" the body and digestive system from polluting substances.

With thousands of studies released each year the gut is known to play a major role in many health conditions including mental health issues, cardiovascular disease, allergies and asthma, autoimmune diseases, some cancers and even diabetes and weight gain. Many of these conditions which are now reaching epidemic proportions have been linked to a dysfunctional gut. Studies have shown a strong link between mental health issues including depression and what is called the gut brain axis. We also know the gut is the centre of our immune system and is strongly influenced by the gut microbiome. As a result the gut has a strong link with allergies and asthma. Peanut allergies for example are not caused by peanuts they are brought about by a dysfunctional gut microbiome.

Antibiotics and many gut medications used for controlling acid reflux have been shown to be devastating to gut health a healthy gut microbiome, as well as many of the chemicals we use around the homes and even the personal care products we apply to our skin. Even our activities either promote gut health and gut healing or harm it. Stress sends messages to the opportunistic (bad) microorganisms in the gut to tell them to start to take over from the good ones. Exercise promotes gut health and healing while no exercise or too much exercise does the exact opposite.

Fortunately, in animal studies we know that many of these conditions can be improved and even reversed if the gut microbiome is repaired. 50% of Parkinson’s Disease has been directly linked with poor gut health while improving the gut microbiome has been shown to dramatically improve symptoms.

The research also shows that while probiotics can be useful in gut healing, repairing the gut microbiome requires an understanding of what encourages a healthy gut microbiome in our diet and lifestyle as well as what causes a dysfunctional microbiome. We now know that all the healthy foods we eat, the vegetables, nuts, seeds, herbs, spices and fruit all feed the gut microbiome which then feeds us and looks after our health. All the studies on healthy diets from the Mediterranean to the original Japanese or the low inflammatory diet (DII) benefit us because they work through the gut to promote gut health and subsequently our health.

Read more →

Lifestyle changes can add 14 years or more to your life. Not drugs

Lifestyle changes can add 14 years or more to your life. Not drugs

Americans have a shorter life expectancy compared with residents of almost all other high-income countries despite the fact that they spend more money on their health care (pharmaceuticals) than any other country.

In this study adopting five major health initiatives—regular exercise, a healthy diet, moderate drinking, not getting overweight or obese and not smoking can extend your life by around 14 years. Each of the healthy lifestyles lowers your chances of getting one of the chronic health problems, such as heart disease and cancer.

This study shows that healthier lifestyles would reduce the rate of premature death from heart disease by 75 per cent, and cancer deaths by 50 per cent, the researchers estimate.

This study yet again highlights the need to focus on lifestyle and diet and not on the pharmaceutical model of health. While there is consistent evidence showing their role in extending life and the quality of life there is virtually no evidence to show pharmaceuticals extend life. However roughly 50% of the lobbyists in the capitals are from pharmaceutical companies.

https://www.drdingle.com/collections/book-sales/products/overcoming-illness-pre-order

Source

Impact of Healthy Lifestyle Factors on Life Expectancies in the US Population.

http://circ.ahajournals.org/content/early/2018/04/25/CIRCULATIONAHA.117.032047

 

Read more →

Eating fewer calories extends life in yet another animal study.

Eating fewer calories extends life in yet another animal study.

There is little doubt about the dangers of overeating but growing research on more than half a dozen animals groups including mice, flies and worms have shown eating fewer calories can extend an animals life by up to 50%.

The latest tests have been carried out on two grey mouse lemurs (Microcebus murinus, lemurid primate). One group had a normal diet for nine years and the other was fed a similar balanced diet that had 30 per cent fewer calories. The lifespan of the calorie-restricted lemur increased by nearly 50 per cent (from 6.4 to 9.6 years, median survival), and its motor capacities remained healthy its whole life, while its brains resembled that of a younger animal.

They reported that the calorie restricted animals had reduced aging-associated diseases and preserved loss of brain white matter in several brain regions. However, caloric restriction accelerated loss of grey matter throughout much of the cerebrum without affecting cognitive performances. What this means they are not sure.

The health benefits of chronic caloric restriction resulting in lifespan extension are well established in many short-lived species. However, the effects in humans and other primates remain unknown and controversial. Beneficial effects of caloric restriction on age-related diseases have also been reported for long-lived species, including rhesus monkeys (Macaca mulatta). However, increased survival was only reported in one study. 

At the very least this suggests that you should not over eat and as I always say make sure you eat nutrient dense foods. 50% of the diseases we now suffer are a result of what we eat.

 

 

Source

Caloric restriction increases lifespan but affects brain integrity in grey mouse lemur primates. April 2018

https://www.nature.com/articles/s42003-018-0024-8

Read more →

Our society is the sickest it has ever been

Our society is the sickest it has ever been


Read more →