Dr Dingle's Blog / metabolic syndrome

Overcomnig illness

Overcomnig illness

Most people do not realise that the majority of the chronic illnesses we suffer from today are not only preventable but many are also reversible.So what better way to show you than individual case studies. But these are only a few of the hndreds and hundreds we have seen

Ann was diagnosed with systemic sclerosis at 24yrs and after 8 months she was totally able to reverse the condition. She is now 41yrs old.

Claire was diagnosed in 2009 as a type II diabetic suffering extreme cramps in my calves, feet, hands, abdominal muscles when bent over and in my neck muscles when yawning too hard. Night time was a nightmare – the worse one was when I had leg cramp ten times in one night, each episode taking up to 20 – 30 minutes to “walk off”. All her results are back within normal limits.

Robyn was suddenly taken ill in the in the early '90s and was diagnosed with everything from Multiple Chemical Sensitivity, Chronic Fatigue Syndrome to Fibromyalgia and became moderately depressed. She started changing her cleaning and personal care items and noticed small improvements. She eats no refined foods, avoids people and situations that don't have a positive input into our lives, including TV and newspapers. She meditates 20 minutes twice every day and goes to bed early and get up early ensuring a good 8-9hrs sleep every night. She now uses a treadmill each day, and can jog for 40 mins and hasn’t felt so good since that last day she played tennis 2 decades ago. She said she now feels about 40yrs old instead of 64yrs and is almost free from all the pain she endured for all that time. “Life is good (again)”.

At 61, Derek started to experience pain in my chest and was referred to a heart specialist and was told that my main artery was 75% to 80% blocked and another two were 30% blocked. He was told that although a good diet would help some, it was not possible to clear the blockages completely and he would require a stent. He made changes in his diet and lifestyle and a year later he went back for another stress test. His stamina and heart function were so greatly improved and his cardiologist could not believe it. The blockages were reduced to the point that they hardly registered at all. In fact, the cardiologist was so impressed he wanted Derek to talk to his team about what I did to get such amazing results. Derek is now 65 and says he feels great. “Peter’s book is filled with amazing information and is the first step to educating yourself”

At 65 Sam had shingles, sleep apnoea, 4 hours of ordinary sleep a night and acid reflux. After just one month of adopting an anti-inflammatory, antioxidant anti- acid producing diet and a few practices to help with his stress he felt like a new man. Still a long way to go he hasn’t felt this good in decades.

Rebecca was 16 and had almost every possible skin condition including eczema, psoriasis and acne. She was tired and because of her skin very antisocial. Applying some anti-inflammatory nutrients like aloe vera and green tea extract to her skin along with strong probiotics, prebiotics and foods to feed the gut microbiota Rebecca saw big changes in just 2 months. She also used low toxicity skin care products without parabens, phthalates and solvents and cut out sugar, sweets and processed food from her diet.

Belinda’s blood pressure was as high as 204/105. Yesterday it was 116/56. “Diet and drug companies are not overjoyed when I speak. I am 81 and the body is better now than 60 years ago”. The secret is she walks briskly 30 minutes a day and average 7,000 steps a day, eat five times a day (small nutritious portions) and avoid processed high salt and sugar, drink lots of water… lots of it. No sugar drinks. Belinda now talks to clubs, businesses and groups all over East Texas with a fun simple message of transforming to a healthy, happy life no matter how old or young you are.

Barry’s blood pressure recently shot up to over 220/110. He saw five different doctors. They all had the same answer: pharmaceuticals. Turns out the root cause was that I recently had an appendectomy, and during the surgery they had misaligned my C1 vertebra. Along with improved nutrition and a healthier lifestyle my chiropractor fixed me.

Amanda followed the program we teach and has one or two smoothies every day, supplements and off sugar and processed foods and within one month her blood pressure dropped more than 50 points, her psoriasis disappeared and she more energy than I had 20 years ago.

It is amazing what the body can do once it has the good nutrition and lifestyle factors to heal itself

Read more →

Artificial Sweeteners, health and the gut microbiome

Artificial Sweeteners, health and the gut microbiome

Artificial sweeteners or Non-caloric artificial sweeteners (NAS) are commonly added to food with increasing controversy regarding their potential ability to promote metabolic imbalances and lead to weight gain instead of weight loss and diabetes type 2. Unfortunately, many people see these drinks and additives as being healthy. The research shows the opposite

The first report on NAS interactions with the microbiome dates back to the early 1980s. Since then, diets containing non-caloric artificial sweeteners (including saccharin, sucralose, and aspartame) have been linked to gut dysbiosis and glucose intolerance even at relatively low doses (5–7 mg/kg/d, equivalent to an adult consuming two to three cans of diet soda per day).

 A study of Splenda, a nonnutritive sweetener containing 1% sucralose, found that the substance impaired the growth of gut bacteria in rats. Ace-K, like sodium saccharin and sodium cyclamate, belongs to sulfonamides, a chemical class associated with antimicrobial activity. In previous studies, saccharin was recognised to enrich the biosynthesis pathway of lipopolysaccharides (LPS) of the mouse gut microbiome, which is a common trigger of inflammation and leaky gut. Studies have also shown different and healthier bacterial diversity for nonconsumers compared to consumers of artificial sweeteners.

In another experiment where commercial formulations of saccharin, sucralose, or aspartame were added to the drinking water of lean mice for 11 weeks all three NAS-consuming groups developed glucose intolerance. NAS was also shown to induce changes in gut microbiota previously observed in T2DType 2 diabetes; notably, the over-representation of gram-negative Bacteroides and under-representation of gram-positive Clostridiales. Another study of 800 healthy and prediabetics showed variability in their after meal (postprandial) glucose responses to the same foods attributed to differences in gut microbiota. While a study of 345 Chinese volunteers revealed that diabetics have a decrease in butyrate-producing bacteria and an increase in opportunistic pathogens relative to healthy subjects.

On the positive side, the sugar alcohol xylitol inhibits the growth of some negative bacterial species including Streptococcus mutans. It is used as a food additive to prevent dental caries and in rats fed a high-fat diet, xylitol improved lipid/fat metabolism. Dietary supplementation with low- or medium-dose xylitol significantly positively altered the fecal microbiota composition in studied mice.

So what are you having in your next drink??

 

Read more →

The health benefits of our life purpose

The health benefits of our life purpose

Many studies have been done on psychosocial factors and their impact on our health and even how long we live. More recently some of these have been able to show that having a sense of purpose can have many health benefits from lowering stress to reducing the risk of cardiovascular disease cancer and even living longer and it doesn’t matter how old you are. The benefits of perceiving and living a life directed toward a broader purpose are widespread and feeling that you have a sense of purpose in life may help you live longer, no matter what your age.

At a biological level having a sense of purpose has been shown to be associated with more positive body biochemistry and lower cortisol (stress) levels and lower levels of proinflammatory cytokines 1, the chemicals linked to cancer, heart attacks and chronic disease which represents one possible mechanism through which purpose in life influences mortality.

Having a purpose in life provides individuals with a sense of direction and goals for the future, as well as a marker of flourishing and a life well-lived. A strong sense of purpose buffers us from the storms of life. It like the roots of a tree, keeping us steady and grounded even in stormy weather. It provides us with a greater sense of controlling our direction in life, are more motivated and may even feel inspired. However, our sense of purpose is not to make money it has to be directed at something greater than yourself.

In research among teens and young adults having a sense of purpose enabled them to look beyond themselves to appreciate their role in the world and to build the psychological resilience necessary to overcome adversity. There is evidence that focusing on personally meaningful and valued goals can buffer the negative effects of stress by allowing individuals to reinforce a sense of who they are and that creating opportunities for individuals to cultivate a sense of purpose is important as we move forward as a society2.

Having a high sense of purpose in life has also been associated with lower risk of heart disease and stroke. In a review of 10 relevant studies with the data of more than 137,000 people they defined purpose in life as a sense of meaning and direction, and a feeling that life is worth living. Previous research has linked purpose to psychological health and well-being and this study found that a high sense of purpose is associated with a 23 percent reduction in death from all causes and a 19 percent reduced risk of heart attack, stroke, or the need for coronary artery bypass surgery or a cardiac stenting procedure. This is better than any drug and has multiple other benefits.

Previous studies have suggested that finding a purpose in life lowers risk of mortality above and beyond other factors that are known to predict longevity. Purposeful adults tend to outlive their peers and experience a diminished risk for both cognitive decline and disability in older adulthood. Moreover, having a purpose in life appears to lead to unique health benefits relative to other aspects of psychological well-being, such as having positive relations with others. In this study of 749 people with an average age of 60 found that the participants’ sense of purpose was positively associated with multiple positive health qualities including vigorous and moderate activity, vegetable intake, flossing, and sleep quality 3.

In another study of 6985 adults between the ages of 51 to 61 and a follow up for 14 years life purpose was significantly associated with all-cause mortality. Those with the strongest sense of purpose almost 2 and a half times more likely to be alive comparing those in the lowest life purpose category. Particularly compelling was the reduction in deaths from heart, circulatory, and blood conditions. Purpose had similar benefits for adults regardless of retirement status, a known mortality risk factor. And the longevity benefits of purpose in life held even after other indicators of psychological well-being, such as positive relations and positive emotions, were taken into account. These findings suggest that there's something unique about finding a purpose that seems to be leading to greater longevity 4.  

These findings point to the fact that finding a direction for life, and setting overarching goals for what you want to achieve can help you actually live longer, regardless of when you find your purpose. So the earlier someone comes to a direction for life, the earlier these protective effects may be able to occur.

So what is your sense of purpose?

Write it down

References

1          Ryff  CD, Singer  BH, Dienberg Love  G.  Positive health: connecting well-being with biology.  Philos Trans R Soc Lond B Biol Sci. 2004;359(1449):1383-1394.

 

2          A. L. Burrow, P. L. Hill. Derailed by Diversity? Purpose Buffers the Relationship Between Ethnic Composition on Trains and Passenger Negative Mood. Personality and Social Psychology Bulletin, 2013; DOI: 10.1177/0146167213499377

 

3          Patrick L Hill, Grant W Edmonds, Sarah E Hampson. A purposeful lifestyle is a healthful lifestyle: Linking sense of purpose to self-rated health through multiple health behaviors.

 

4          . P. L. Hill, N. A. Turiano. Purpose in Life as a Predictor of Mortality Across Adulthood. Psychological Science, 2014; DOI: 10.1177/0956797614531799

 

 

Read more →

Probiotics can reduce pain

Probiotics can reduce pain

Treatments for obesity have been shown to reduce pain secondary to weight loss. Intestinal microbiota has been shown to influence obesity and pain sensitivity.
Physiological pain plays a life-essential protective role, while acute or chronic pathological pain indicates a medical problem that needs treatment and imposes a medical challenge. Neurotransmitters, immune cells, and hormones have been demonstrated to contribute in pathogenesis of chronic pain.
Pain threshold is influenced by several factors, including obesity, which alters adipose tissue metabolic and endocrine functions leading to alterations in systemic physiology including an increased release of fatty acids, hormones, and proinflammatory molecules that contribute to obesity associated complications. Studies have demonstrated that obese humans and rats are more sensitive to pain stimuli than normal weighted ones.
Previous studies have demonstrated a relationship between intestinal microbiota and diseases including pain disorders with probiotics having a positive effect.
In this study the mice taking probiotics had a significantly lower sensitivity to mechanical stimulation compared to their corresponding control. The results of this study suggest a protective effect of probiotics on nociception circuits, which propose a direct result of the weight reduction or an indirect result of anti-inflammatory properties of the probiotics.

source

Potential Nociceptive Regulatory Effect of Probiotic Lactobacillus rhamnosus PB01 (DSM 14870) on Mechanical Sensitivity in Diet-Induced Obesity Model

https://www.hindawi.com/journals/prm/2016/5080438/

 

Read more →

Our Acid Stomach

Our Acid Stomach

The intestinal microbiome is a plastic ecosystem that is shaped by environmental and genetic factors, interacting with virtually all of our organs, tissues and cells. One of the most important factors in regulating and controlling our microbiome is the pH or acid level.

While often mentioned in terms of the stomach the pH has a controlling role to play in the health of the whole GI tract from the mouth to the anus and changes in the normalpH anywhere in the gut can have large implications on the rest of the GI tract. The pH scale goes from 1 being very acidic to 14 being very alkaline. The level in our blood and tissues should be constantly around 7.36, neutral and the level in our GI trace varies from 1 to 8. We cover this a lot more in our book Overcoming Illnesswhich focuses on the role of inflammation, oxidation and acidosis in illness.

After initial breakdown by chewing, food is churned by the smooth muscles of the stomach and is broken down by hydrochloric acid and stomach juices (enzymes). The pH of the stomach is highly acidic, around 1.5 (1.0-2.5) due to the hydrochloric acid which helps to kill harmful microorganisms, denature protein for digestion, and help create favorable conditions for the enzymes in the stomach juices such as pepsinogen.[1] Not to mention sending messages along the GI tract that everything is working well in the stomach. If the pH is too high, say 3 or 4 (more alkaline) then the system does not work and you end up with digestive and health complications. For example, premature infants have less acidic stomachs (pH more than 4) and as a result are susceptible to increased gut infections.[2] Similarly, the elderly show relatively low stomach acidity and a large number of people, more than 30%, over the age of 60 have very little or no Hydrochloric Acid in their stomachs.[3]

Similarly, in gastric bypass weight loss surgery, roughly 60 percent of the stomach is removed. A consequence of this procedure is an increase in gastric pH levels that range from 5.7 to 6.8 (not 1.5) to making it more alkaline and as a result are more likely to experience microbial overgrowth.[4] We see similar patterns in other clinical cases such as acid reflux in which treatment involves the use of proton-pump inhibitors[5] and celiac disease[6] where delayed gastric emptying is associated with reduced acidity and increased disease.

Unfortunately, acid reflux is often wrongly treated as a condition which involves the production of too much acid. It is in fact, the stomach finding it difficult to digest the foods, most commonly as a result not having enough acid to complete digestion and why medications (see later) which further reduce stomach acid have serious and deadly side effects on health, the digestive process and the gut microbiota. Acid reflux affects about 20% of the adult population and is much higher in older people which is consistent with the studies showing lower stomach acid as we age.

[1] Adbi. 1976; Martinsen et al., 2005.

[2] Carrion and Egan, 1990.

[3] Husebye et al., 1992.

[4] Machado et al., 2008.

[5] Amir et al., 2013.

[6] Usai et al., 1995.

Read more →

The healing power of raw cabbage

The healing power of raw cabbage

Another reason to add some of the cabbage family to your daily diet, preferably raw is because of their gut healing properties and how they promote gut health through the gut microbiome. The Brassica family including cabbage, broccoli, brussel sprouts, kale, arugula (rocket), bok choy, cauliflower, collard greens, radish, turnip and others have been recognized for their gut healing and gut health properties for hundreds of years and modern epidemiologic studies have shown a frequent consumption of cruciferous vegetables is associated with lower risk of cancer, especially cancers of the digestive tract, bladder, breast, prostate, and lung. However, only now are we recognizing that many of these benefits are mediated through the microbiome and that their frequent consumption alters the composition of the microbiome.

Cruciferous vegetables are a rich source of glucosinolates a precursor to the Isothiocyanates (ITC), which exhibit powerful biological functions in fighting cancers, cardiovascular, neurodegenerative diseases and gut healing. The Isothiocyanates are a by product of specific plant enzymes (myrosinase) active during chewing or crushing when broccoli is consumed raw or lightly steamed, however, like all enzymes myrosinase is deactivated by cooking and ingestion of cooked broccoli typically provides only about one tenth the amount of isothiocyanates as that from raw broccoli. So to maximize the gut healing, gut health and overall benefits of these foods they are best eaten raw or just lightly steamed.

Instead when cooked cruciferous vegetables are consumed, gut bacteria are mainly responsible for ITC production in the gut. This is highlighted after taking oral antibiotics, the ITCs availability and uptake decreases after eating cooked cruciferous vegetable. It also appears that there is considerable difference in the ability of individuals, due to individual differences in gut microbial community, to produce the isothiocyanates. Although, the gut communitys ability is altered over just 4 days. In one study feeding raw or cooked broccoli for four days or longer both changed the microbiota composition and caused a greater production of isothiocyanates. Interestingly, a three-day withdrawal from broccoli reversed the increased microbial metabolites suggesting that the microbiota requires four or more days of broccoli consumption and is reversible.

The lactic acid bacteria appear to have myrosinase-like activity and the fermented Brassica food products, such as sauerkraut and kimchi, are particularly rich in Lactobacillus, and a diet rich in Brassica may promote Lactobacillus growth in the colon.

 

Read more →

Curcumin (turmeric)stops age and diet relted arterial damage

Curcumin (turmeric)stops age and diet relted arterial damage

Curcumin, a main component of natural turmeric (Curcuma longa Linn, Turmeric), is a type of polyphenol, which has long been used for curry spice, Chinese traditional herbal medicine, or in Japan, as food coloring for Japanese confectioneries.
Recent studies have shown that curcumin has different beneficial physiological activities in the body. Curcumin is known to have anti-oxidative and anti-inflammatory actions and anticancer action through multiple actions (cytostasis, induction of apoptosis, and anti-angiogenesis, anti-virus action, and cytoprotective).
Furthermore, curcumin is known to lower blood lipid (fat) levles, affecting various transcription factors that control gene expression involved in glucose and fat metabolism, and curcumin intake is expected to reduce different disorders caused by a high-fat diet (HFD).
In this study, they examined the effects of long-term administration of curcumin on artery aging and chronic inflammation—the causes of arteriosclerotic disease. in the high fat diet group oxidative stress increased with cell regulation in the arteries followed by increased dying cells and enhanced inflammation. While the group with curcumin added had suppression of oxidative stress and the arteries of mice at 80 weeks (old age) were the equivalent of those of the 8 week old mice in the experiment.
It seems curcumin has anti-ageing effects on our arteries which is why I supplement with it every day
Source. Curcumin Inhibits Age-Related Vascular Changes in Aged Mice Fed a High-Fat Diet.
https://www.mdpi.com/2072-6643/10/10/1476/htm
Read more →

Fasting reverses Type 2 diabetes

Fasting reverses Type 2 diabetes

Despite what we are often told the overwhelming evidence shows that Type 2 diabetes is a diet and lifestyle illness. It also shows that when you reverse the conditions that caused it the disease is also reversible.

Type 2 diabetes (T2D) is a chronic disease closely linked to the epidemic of obesity that requires long-term medical attention to limit the development of its wide range of complications. Many of these complications arise from the combination of resistance to insulin action, inadequate insulin secretion, and excessive or inappropriate glucagon secretion. Approximately 10% of the population of the USA and Canada have a diagnosis of T2D, and the morbidity and mortality rates associated with it are fairly high. The economic burden of T2D in the USA is $245 billion and around $20 billion in Australia.

This case documents three patients referred to the Intensive Dietary Management clinic in Toronto, Canada, for insulin-dependent type 2 diabetes. It demonstrates the effectiveness of therapeutic fasting to reverse their insulin resistance, resulting in cessation of insulin therapy while maintaining control of their blood sugars. In addition, these patients were also able to lose significant amounts of body weight, reduce their waist circumference and also reduce their glycated haemoglobin level.

These three cases exemplify that therapeutic fasting may reduce insulin requirements in T2D. Given the rising cost of insulin, patients may potentially save significant money. Further, the reduced need for syringes and blood glucose monitoring may reduce patient discomfort.

Therapeutic fasting has the potential to fill this gap in diabetes care by providing similar intensive caloric restriction and hormonal benefits as bariatric surgery without the invasive and dangerous surgery. During fasting periods, patients are allowed to drink unlimited amounts of very low-calorie fluids such as water, coffee, tea and bone broth. A general multivitamin supplement is encouraged to provide adequate micronutrients. Precise fasting schedules vary depending primarily on the patient’s preference, ranging from 16 hours to several days. On eating days, patients are encouraged to eat a diet low in sugar and refined carbohydrates, which decreases blood glucose and insulin secretion.

This means that patients with T2D can reverse their diseases without the worry of side effects and financial burden of many pharmaceuticals, as well as the unknown long-term risks and uncertainty of surgery, all by means of therapeutic fasting.

 

Source http://casereports.bmj.com/content/2018/bcr-2017-221854.full

Read more →

A short time between eating your last meal and sleep can increase your risk of breast and prostate cancer.

A short time between eating your last meal and sleep can increase your risk of breast and prostate cancer.

Our modern life involves irregular sleeping and eating patterns that are associated with adverse health effects. Studies have shown late eating habits and short periods between sleep and eating are associated with metabolic syndrome, weight gain and altering the gut microbiome and gut health.
 
This study of breast and prostate cancer patients and their controls in Spain found those sleeping two or more hours after supper had a 20% reduction in cancer risk for breast and prostate cancer combined and in each cancer individually. A similar protection was observed in subjects having supper before 9 pm compared with supper after 10 pm.
The effect of longer breaks between eating and sleep was more pronounced among subjects adhering to cancer prevention recommendations and in morning types.
Adherence to diurnal eating patterns and specifically a long interval between last meal and sleep are associated with a lower cancer risk, stressing the importance of evaluating timing in studies on diet and cancer.
 
source
https://onlinelibrary.wiley.com/doi/abs/10.1002/ijc.31649
Read more →

Gut Health and our Stomach pH.

Gut Health and our Stomach pH.

One of the most important factors in regulating our gut health, digestion and controlling our microbiome is the pH or acid level.

While often mentioned in terms of the stomach, the pH has a controlling role to play in the health of the entire GI tract from the mouth to the anus; changes in the “normal” pH anywhere in the gut can have major implications on the rest of the GI tract. The pH scale goes from 1, being very acidic, to 14, being very alkaline. The level in our blood and tissues should be constantly around 7.36, neutral, and the level in our GI tract varies from 1 to 8. We cover this a lot more in our book Overcoming Illness, which focuses on the role of inflammation, oxidation and acidosis in illness.

After initial breakdown by chewing, food is churned by the smooth muscles of the stomach and is broken down by hydrochloric acid and stomach juices (enzymes). The pH of the stomach is highly acidic, around 1.5 (1.0 to 2.5) due to the hydrochloric acid that helps to kill harmful micro-organisms, denature protein for digestion, and help create favourable conditions for the enzymes in the stomach juices, such as pepsinogen.[1] Not to mention sending messages along the GI tract that everything is working well in the stomach. If the pH is too high, say 3 or 4 (low acidity and more alkaline), then the system does not work and you end up with poor gut health, digestive and health complications. For example, premature infants have less acidic stomachs (pH more than 4) and as a result are susceptible to increased gut infections.[2] Similarly, the elderly show relatively low stomach acidity and a large number of people, more than 30%, over the age of 60 have very little or no hydrochloric acid in their stomachs.[3]

Similarly, in gastric bypass weight loss surgery, roughly 60% of the stomach is removed. A consequence of this procedure is an increase in gastric pH levels that range from 5.7 to 6.8 (not 1.5) making it more alkaline and, as a result, more likely to experience microbial overgrowth.[4] We see similar patterns in other clinical cases such as acid reflux in which treatment involves the use of proton-pump inhibitors[5] and celiac disease[6] where delayed gastric emptying is associated with reduced acidity and increased disease.

Unfortunately, acid reflux is often wrongly treated as a condition that involves the production of too much acid. It is, in fact, the stomach finding it difficult to digest the foods, most commonly as a result of not having enough acid to complete digestion. Medications (see my other posts) which further reduce stomach acid have serious and sometimes deadly side effects on health, the digestive process and the gut microbiota. Acid reflux affects about 20% of the adult population and is much higher in older people, which is consistent with studies showing lower stomach acid as we age.

 

[1] Adbi 1976; Martinsen et al., 2005.

[2] Carrion and Egan, 1990.

[3] Husebye et al., 1992.

[4] Machado et al., 2008.

[5] Amir et al., 2013.

[6] Usai et al., 1995.

Read more →