Dr Dingle's Blog / metabolic syndrome

Curcumin (turmeric)stops age and diet relted arterial damage

Curcumin (turmeric)stops age and diet relted arterial damage

Curcumin, a main component of natural turmeric (Curcuma longa Linn, Turmeric), is a type of polyphenol, which has long been used for curry spice, Chinese traditional herbal medicine, or in Japan, as food coloring for Japanese confectioneries.
Recent studies have shown that curcumin has different beneficial physiological activities in the body. Curcumin is known to have anti-oxidative and anti-inflammatory actions and anticancer action through multiple actions (cytostasis, induction of apoptosis, and anti-angiogenesis, anti-virus action, and cytoprotective).
Furthermore, curcumin is known to lower blood lipid (fat) levles, affecting various transcription factors that control gene expression involved in glucose and fat metabolism, and curcumin intake is expected to reduce different disorders caused by a high-fat diet (HFD).
In this study, they examined the effects of long-term administration of curcumin on artery aging and chronic inflammation—the causes of arteriosclerotic disease. in the high fat diet group oxidative stress increased with cell regulation in the arteries followed by increased dying cells and enhanced inflammation. While the group with curcumin added had suppression of oxidative stress and the arteries of mice at 80 weeks (old age) were the equivalent of those of the 8 week old mice in the experiment.
It seems curcumin has anti-ageing effects on our arteries which is why I supplement with it every day
Source. Curcumin Inhibits Age-Related Vascular Changes in Aged Mice Fed a High-Fat Diet.
https://www.mdpi.com/2072-6643/10/10/1476/htm
Read more →

Fasting reverses Type 2 diabetes

Fasting reverses Type 2 diabetes

Despite what we are often told the overwhelming evidence shows that Type 2 diabetes is a diet and lifestyle illness. It also shows that when you reverse the conditions that caused it the disease is also reversible.

Type 2 diabetes (T2D) is a chronic disease closely linked to the epidemic of obesity that requires long-term medical attention to limit the development of its wide range of complications. Many of these complications arise from the combination of resistance to insulin action, inadequate insulin secretion, and excessive or inappropriate glucagon secretion. Approximately 10% of the population of the USA and Canada have a diagnosis of T2D, and the morbidity and mortality rates associated with it are fairly high. The economic burden of T2D in the USA is $245 billion and around $20 billion in Australia.

This case documents three patients referred to the Intensive Dietary Management clinic in Toronto, Canada, for insulin-dependent type 2 diabetes. It demonstrates the effectiveness of therapeutic fasting to reverse their insulin resistance, resulting in cessation of insulin therapy while maintaining control of their blood sugars. In addition, these patients were also able to lose significant amounts of body weight, reduce their waist circumference and also reduce their glycated haemoglobin level.

These three cases exemplify that therapeutic fasting may reduce insulin requirements in T2D. Given the rising cost of insulin, patients may potentially save significant money. Further, the reduced need for syringes and blood glucose monitoring may reduce patient discomfort.

Therapeutic fasting has the potential to fill this gap in diabetes care by providing similar intensive caloric restriction and hormonal benefits as bariatric surgery without the invasive and dangerous surgery. During fasting periods, patients are allowed to drink unlimited amounts of very low-calorie fluids such as water, coffee, tea and bone broth. A general multivitamin supplement is encouraged to provide adequate micronutrients. Precise fasting schedules vary depending primarily on the patient’s preference, ranging from 16 hours to several days. On eating days, patients are encouraged to eat a diet low in sugar and refined carbohydrates, which decreases blood glucose and insulin secretion.

This means that patients with T2D can reverse their diseases without the worry of side effects and financial burden of many pharmaceuticals, as well as the unknown long-term risks and uncertainty of surgery, all by means of therapeutic fasting.

 

Source http://casereports.bmj.com/content/2018/bcr-2017-221854.full

Read more →

A short time between eating your last meal and sleep can increase your risk of breast and prostate cancer.

A short time between eating your last meal and sleep can increase your risk of breast and prostate cancer.

Our modern life involves irregular sleeping and eating patterns that are associated with adverse health effects. Studies have shown late eating habits and short periods between sleep and eating are associated with metabolic syndrome, weight gain and altering the gut microbiome and gut health.
 
This study of breast and prostate cancer patients and their controls in Spain found those sleeping two or more hours after supper had a 20% reduction in cancer risk for breast and prostate cancer combined and in each cancer individually. A similar protection was observed in subjects having supper before 9 pm compared with supper after 10 pm.
The effect of longer breaks between eating and sleep was more pronounced among subjects adhering to cancer prevention recommendations and in morning types.
Adherence to diurnal eating patterns and specifically a long interval between last meal and sleep are associated with a lower cancer risk, stressing the importance of evaluating timing in studies on diet and cancer.
 
source
https://onlinelibrary.wiley.com/doi/abs/10.1002/ijc.31649
Read more →

Gut Health and our Stomach pH.

Gut Health and our Stomach pH.

One of the most important factors in regulating our gut health, digestion and controlling our microbiome is the pH or acid level.

While often mentioned in terms of the stomach, the pH has a controlling role to play in the health of the entire GI tract from the mouth to the anus; changes in the “normal” pH anywhere in the gut can have major implications on the rest of the GI tract. The pH scale goes from 1, being very acidic, to 14, being very alkaline. The level in our blood and tissues should be constantly around 7.36, neutral, and the level in our GI tract varies from 1 to 8. We cover this a lot more in our book Overcoming Illness, which focuses on the role of inflammation, oxidation and acidosis in illness.

After initial breakdown by chewing, food is churned by the smooth muscles of the stomach and is broken down by hydrochloric acid and stomach juices (enzymes). The pH of the stomach is highly acidic, around 1.5 (1.0 to 2.5) due to the hydrochloric acid that helps to kill harmful micro-organisms, denature protein for digestion, and help create favourable conditions for the enzymes in the stomach juices, such as pepsinogen.[1] Not to mention sending messages along the GI tract that everything is working well in the stomach. If the pH is too high, say 3 or 4 (low acidity and more alkaline), then the system does not work and you end up with poor gut health, digestive and health complications. For example, premature infants have less acidic stomachs (pH more than 4) and as a result are susceptible to increased gut infections.[2] Similarly, the elderly show relatively low stomach acidity and a large number of people, more than 30%, over the age of 60 have very little or no hydrochloric acid in their stomachs.[3]

Similarly, in gastric bypass weight loss surgery, roughly 60% of the stomach is removed. A consequence of this procedure is an increase in gastric pH levels that range from 5.7 to 6.8 (not 1.5) making it more alkaline and, as a result, more likely to experience microbial overgrowth.[4] We see similar patterns in other clinical cases such as acid reflux in which treatment involves the use of proton-pump inhibitors[5] and celiac disease[6] where delayed gastric emptying is associated with reduced acidity and increased disease.

Unfortunately, acid reflux is often wrongly treated as a condition that involves the production of too much acid. It is, in fact, the stomach finding it difficult to digest the foods, most commonly as a result of not having enough acid to complete digestion. Medications (see my other posts) which further reduce stomach acid have serious and sometimes deadly side effects on health, the digestive process and the gut microbiota. Acid reflux affects about 20% of the adult population and is much higher in older people, which is consistent with studies showing lower stomach acid as we age.

 

[1] Adbi 1976; Martinsen et al., 2005.

[2] Carrion and Egan, 1990.

[3] Husebye et al., 1992.

[4] Machado et al., 2008.

[5] Amir et al., 2013.

[6] Usai et al., 1995.

Read more →

Gut health impacts all health conditions

Gut health impacts all health conditions

Your gut microbiome has an astonishing ability to keep you healthy or ill. The list of diseases that we know of that are linked to the intestinal microbiota grows every day and these diseases are usually complex in terms of both how the disease develops and complications. Having the right balance of good microorganisms in our gut and good gut health is not only essential for good digestion but also in the prevention of or reversing chronic diseases, including.

Poor gut health has been linked with a long list of illnesses including

ADHD

Autism

Asthma and Allergies

Alzheimer’s

Parkinson’s

Multiple sclerosis

Arthritis

Cancers (especially digestive cancers, i.e. bowel and colon and brain tumours)

Inflammatory Bowel Disease including SIBO, Crohn’s and Ulcerative colitis

Metabolic health

Metabolic syndrome

Cardio vascular disease

High blood pressure

Weight Loss

Diabetes 2

Diabetes 1

Depression, Anxiety and Stress

Skin health and ageing

Eczema, Dermatitis and Psoriasis

Immune system function including susceptibility and tolerance to viruses and bacterial infections like cold and flu.

Colic, Constipation and Diarrhea

Celiac disease and Gluten and lactose intolerance

Liver disease

Dental Health

 

The list goes on. For example, even in the area of mental illness we have conditions such as

Depression, Anxiety and Stress

Bipolar,

Schizophrenia

ADHD & Autism

Focus and memory

Learning, mental productivity and cognitive decline. As well as controlling some of our needs and desires i.e. food cravings and appetite, our relationships and our social interactions.

These are all impacted by gut health. Because of the role of inflammation, oxidation nutrition and the many functions of the gut microbiome there is not a health condition that is not influenced by the gut microbiome either directly or indirectly.

Because of the multiple functions of the microbiota dysbiosis can manifest as many and multiple health conditions often termed comormidity or multi morbidity. It is not one disease it manifests as many. For example, large studies have shown the multi-morbidity of eczema, rhinitis, and asthma. Inflammatory Bowel Disease (IBD) patients will also frequently suffer from rheumatologic manifestations, liver multimorbidities and lung, namely chronic obstructive pulmonary disease and bronchial asthma, bronchitis and other chronic respiratory disorders in the adult population, gallbladder disease, heart disease and associated morbidity and mortality, anxiety, stress and depression, as well as arthritis, psoriasis, and pericarditis. In one study of 47325 patients they reported 20 different immune mediate diseases associated with IBD including some of those mentioned above and celiac disease, type 1 diabetes, rheumatoid arthritis, and ankylosing spondylitis.

This evidence strongly shows any health condition will have many layers of disease occurring throughout the body at any one time that are related but not connected at the time of diagnosis.

 

Read more →

Gut Health Gut Healing an Modern Perspective

Gut Health Gut Healing an Modern Perspective

Arguable the biggest health problem facing us today is gut health rivaling the current obesity crisis and tobacco smoking in its impact on our health. Every health condition is linked to gut health and gut healing either directly or indirectly through inflammation and oxidation. Historically every culture understood this and were involved in extensive practices of gut healing and even our own up until 60 or so years ago. The first thing health practitioners throughout history would do is to start to fix the gut.

Until recently the positive effects of the gut microbiome on our digestive system and health has been severely under rated. Wisdom of Chinese doctors from centuries ago, who somehow knew that the intestines were not merely a digestive organ, but the centre of health and wellbeing. Hippocrates was recorded as saying that all illness begins in the gut. Throughout history from the Egyptians till around 80 years ago medicine and the bowels were frequently mentioned in the same sentence and good health revolved around gut health.

Even today the nomadic Maasai tribes in Africa attribute most illnesses to the effect of “pollutants” that block or inhibit digestion. In these communities the plants are used to cure diseases served mainly as strong purgatives and emetics; they "cleanse" the body and digestive system from polluting substances.

With thousands of studies released each year the gut is known to play a major role in many health conditions including mental health issues, cardiovascular disease, allergies and asthma, autoimmune diseases, some cancers and even diabetes and weight gain. Many of these conditions which are now reaching epidemic proportions have been linked to a dysfunctional gut. Studies have shown a strong link between mental health issues including depression and what is called the gut brain axis. We also know the gut is the centre of our immune system and is strongly influenced by the gut microbiome. As a result the gut has a strong link with allergies and asthma. Peanut allergies for example are not caused by peanuts they are brought about by a dysfunctional gut microbiome.

Antibiotics and many gut medications used for controlling acid reflux have been shown to be devastating to gut health a healthy gut microbiome, as well as many of the chemicals we use around the homes and even the personal care products we apply to our skin. Even our activities either promote gut health and gut healing or harm it. Stress sends messages to the opportunistic (bad) microorganisms in the gut to tell them to start to take over from the good ones. Exercise promotes gut health and healing while no exercise or too much exercise does the exact opposite.

Fortunately, in animal studies we know that many of these conditions can be improved and even reversed if the gut microbiome is repaired. 50% of Parkinson’s Disease has been directly linked with poor gut health while improving the gut microbiome has been shown to dramatically improve symptoms.

The research also shows that while probiotics can be useful in gut healing, repairing the gut microbiome requires an understanding of what encourages a healthy gut microbiome in our diet and lifestyle as well as what causes a dysfunctional microbiome. We now know that all the healthy foods we eat, the vegetables, nuts, seeds, herbs, spices and fruit all feed the gut microbiome which then feeds us and looks after our health. All the studies on healthy diets from the Mediterranean to the original Japanese or the low inflammatory diet (DII) benefit us because they work through the gut to promote gut health and subsequently our health.

Read more →

Our society is the sickest it has ever been

Our society is the sickest it has ever been


Read more →

A Pecan a day keeps the diabetes and cardiovascular disease away.

A Pecan a day keeps the diabetes and cardiovascular disease away.

A large amount of evidence has shown a high intake of tree nuts is associated with a reduced risk of cardiovascular disease (CVD), mortality from type 2 diabetes (T2DM), and all-cause mortality.

In this study after 4 weeks on a pecan-rich diet the researchers saw beneficial changes in serum insulin, insulin resistance (HOMA-IR) and beta cell function (HOMA-β) as well as cardiometabolic disease. That is a significant reduction in the risk of diabetes2, heart attacks and stroke.

Cardiovascular diseases (CVD) are a leading cause of death worldwide, and is primarly caused by inflammation and oxidation. Within the past few decades, there has also been a dramatic increase in diet-related chronic diseases related to CVD risk, i.e., diabetes, obesity, and hypertension, in both industrialized and developing nations. The problem is only getting worse even though we spend more money on pharmaceuticals and the medical system than ever before. Increased production of reactive oxygen species, oxidative stress, and inflammation, are the leading causes of type 2 diabetes mellitus (T2DM), arterial hypertension, and dyslipidemia.

A growing body of evidence has shown that a high intake of nuts (all types) is associated with a reduced risk of CVD development, all-cause mortality, and mortality from diabetes. Indeed, a nut-containing diet also contributes to weight control and weight loss despite the large number of calories.

Bioactive compounds present in nuts, include essential fatty acids, vitamins and minerals, fiber, and phytochemicals, have all been shown to reduce inflammation, improving vascular reactivity as well as fasting glucose and insulin sensitivity, and by lowering oxidative stress. Numerous studies have now shown that consumption of nuts is effective in reducing oxidative stress and inflammation. Other studies have shown frequent nut consumption is associated with lower concentrations of inflammation (CRP, IL-6) and some endothelial (the artery lining) markers in clinical trials. In a study of 5,013 participants, a greater intake of nuts was associated with lower amounts of inflammatory biomarkers. Subjects with nut intake of five or more times per week had a 20% nearly 20% reduction in inflammation compared to those who never or almost never consumed nuts. Pistachio nuts, for example, reduce oxidative stress and inflammation. Pistachio kernels have anti-inflammatory and antioxidant properties at lower doses than reported previously and decreased inflammation (TNF-α and IL-1β) in a dose-dependent way. That is, the more the participants consumed, the lower the inflammation.

EAT MORE NUTS

But not peanuts and cashews

For much more information on how to reverse diabetes and cardiovascular disease (and all chronic illness) “Overcoming Illness” our latest book is a must read.

https://www.drdingle.com/collections/frontpage/products/overcoming-illness-pre-order

 

Source

A Pecan-Rich Diet Improves Cardiometabolic Risk Factors in Overweight and Obese Adults: A Randomized Controlled Trial

Diane L. McKay 1,*, Misha Eliasziw 2, C. Y. Oliver Chen 1 and Jeffrey B. Blumberg 1http://www.mdpi.com/2072-6643/10/3/339/htm

Read more →

Positive attitude decreases the risk of dementia by 50%

Positive attitude decreases the risk of dementia by 50%

One of the strongest risk factors for dementia is the ε4 variant of the APOE gene. One quarter of the population carries the ε4 variant of the APOE gene, which is one of the strongest risk factors for dementia. Yet, many who carry it never develop dementia. This study examined perceptions about various aspects of old age, reduces the risk of dementia for APOE ε4 carriers as well as older individuals in general.

In this study of 4,765 Health and Retirement Study participants who were aged 60 or older and dementia-free at the beginning. Among those with APOE ε4, those with positive age beliefs were 49.8% less likely to develop dementia than those with negative age beliefs. The results of this study suggest that positive age beliefs, which are modifiable and have been found to reduce stress, can act as a protective factor, even for older individuals at high risk of dementia.

Considerable research has found that positive age beliefs predict better cognitive performance; whereas, negative age beliefs predict worse cognitive performance. The pattern of age beliefs predicting cognition has been supported many studies, together with three meta-analyses. Further, a recent study found that negative age beliefs predicted the development of Alzheimer’s disease biomarkers.

Short- and long-term randomized controlled interventions conducted with older participants have shown that positive age beliefs can be bolstered and negative age beliefs can be mitigated with corresponding changes in cognitive and physical performance.

Recent studies found that negative age beliefs can exacerbate stress; in contrast, positive age beliefs can help buffer against the deleterious effects of stress. While another set of studies suggests that stress can contribute to the development of dementia.

However, underlying all this is inflammation and oxidation. The increased negative attitude leads to increased stress which leads to increased inflammation and oxidation which leads to increased dementia. Stop the downward cycle by lowering the inflammation and bolstering the positive thoughts.

The reduction of stress by positive age beliefs could potentially contribute to a lower incidence of dementia among older individuals in general and specifically among those with APOE ε4.

source

Levy BR, Slade MD, Pietrzak RH, Ferrucci L (2018) Positive age beliefs protect against dementia even among elders with high-risk gene. PLoS ONE 13(2): e0191004. https://doi.org/10.1371/journal.pone.0191004

Read more →

Weight gain is not in the genes. It is in what you do to the genes

Weight gain is not in the genes. It is in what you do to the genes

Genetic determinism—that is, the notion that “it’s all in the genes,” that everything is determined by our DNA and that we are victims of our hereditary—is just not right. You and your conditions, including weight gain and obesity, are not determined by your DNA. In studies of separated twins of obese parents, children growing up in a thin family are more likely to grow up thin. If they grow up in an overweight family they are more likely to be overweight. It appears that while genes have a role in weight gain, it is the passing on of eating habits that are more important.

In recent years, a new idea has come to the forefront of genetics and is the focus of thousands of studies: epigenetics. It is now understood that obesity and weight gain and all the chronic diseases are linked to epigenetic triggers. The vast majority of conditions leading to weight gain are a result of complex interactions between genes and the environment; these interactions cannot be explained by classic genetics.

It is true that the genes we are born with may have an association with weight gain and disease, but this does not prove causation. The truth is only a very small number of people have “smoking gun” genes which predispose them to obesity, diabetes and heart disease. Although heritability is considered to be a major risk factor for weight gain and obesity, the almost 40 candidate genes identified by gene studies (GWAS) so far account for only five percent to 10% of the observed variance in body mass index in human subjects. Other research suggests that heredity may be responsible for less than one percent of the obesity crisis. All the genes combined explain a maximum of 0.9% of variation in human body mass index. So, if it’s not in the genes…

 

It’s all in the EPIgenes

Epigenetics provides the missing link between our environment and weight gain as well as all the chronic illnesses we suffer. Your genes are always responding, in good or bad ways, to what you eat, environmental toxins, your emotions, your stresses and your experiences, and to the nutritional microenvironment within each of your body’s cells. Environmental factors are capable of causing epigenetic changes in DNA that can potentially alter gene expression and result in weight gain and obesity or the opposite. Environmental influences—including nutrition, behaviour, chemicals, radiation and even stress and emotions—can silence or activate a gene without altering the genetic code in any way. These changes in gene expression, the so-called “turning on” of a gene, occur without any change to the DNA sequence.

Each nutrient, each interaction, each experience can therefore manifest itself through biochemical changes, which may have effects at birth or 40 years down the track, or even in the next generation or two. Some of the most well known studies linking epigenetics and obesity have involved the “Agouti” mice. A short-term dietary intervention in pregnant agouti mice, in the form of supplements of folic acid, vitamin B12, choline and betaine, has shown long lasting beneficial influences on the health and appearance of the offspring for multiple generations. The mice that did not get the nutritional supplementation became obese and developed the equivalent of metabolic syndrome and diabetes.

The GOOD news is that, while epigenetic changes can lead to an increase in weight gain and obesity, understanding epigenetics puts us in control. Not only can we avoid outcomes that were once thought of as “in our genes,” but also research is showing that, by changing our diet and lifestyle, we can reverse many of these conditions. Just as the genes for weight gain can be turned on, they can also—with the right information and actions—be turned off. Numerous studies have shown that changing our diet, lifestyle and environment alters our DNA. We are now in control.

Read more →