Dr Dingle's Blog / attention

Essential Sleep (Part 3)

Essential Sleep (Part 3)

Sleep problems

Many sleep problems but by far the biggest is sleep deprivation and poor sleep. However too much sleep can also be a problem. Over sleeping may also be a problem. In one study sleeping 10 hours or more also increased the mortality rates by one and a half times.

 Sleep Deprivation

Sleep is as important to the human body as food and water, but most of us don't get enough sleep. Dysoninia (poor sleep) related sleep disorders alone are broken into Intrinsic, Extrinsic and Circadian‑Rhythm sleep disorders including disorders such as but not limited to: "Psychophysiologic Insomnia, Sleep State Misperception Idiopathic Insomnia, Narcolepsy, Recurrent Hypersomnia, Idiopathic Hypersomnia...Restless Legs Syndrome & Intrinsic Sleep Disorder NOS" (MSM, 2001, pp. 27).

Risk factors for sleep related illness are diet, lifestyle, occupation, stress and grief, amongst many others (Helmanis, 2006 pp. 24‑25).

Almost 90 per cent of Australians suffer from some type sleep disorder at some stage of their lives. Of these, 30 per cent suffer from severe sleep disorders. Very few people regularly enjoy the amount, or quality of sleep that they need. The estimated economic costs to the country from this are between 3 and 7 billion dollars annually. There are also huge, unmeasured physical, psychological, emotional and social costs.

Insomnia

Causative factors for insomnia may be multifaceted but generally include some psycho physiologic hyperarousal or emotional distress. Other precursors may be pain, movement disorders, psychiatric disorders, circadium rhythm dysfunction, medication and substance abuse (Billiard and Bentley, 2004). In some cases, the risk of insomnia is subject to a genetic bias. However, specific physiologic indicators for the familial influence have not been fully identified (Parkes and Lock, 2009).

 Insomnia is the difficulty initiating or maintaining sleep or both resulting in inadequate quality or quantity of sleep (Tomoda et al, 2009). Insomnia can manifest itself by many symptoms from not being able to sleep at normal hours and low quality and quantity of sleep to sleeping but not finding it refreshing. Other symptoms may include daytime sleepiness, frequent waking, early morning waking and difficulty retuning to sleep (Cureresearch.com, 2005).

Most adults have experienced insomnia or sleeplessness at one time or another in their lives (Straker, 2008). It is estimated that insomnia effects around 30-50% of the general population with 10% experiencing chronic insomnia (Straker, 2008). It has been estimated that in the US that 70 million people suffer sleep problems, and of these, 30 million suffer chronic insomnia (Stahura and Martin, 2006). Recently a survey showed that 1046 of the 2000 adults surveyed experience at least one night of lost sleep due to insomnia symptoms; the survey also concluded that insomnia is a growing issue of concern (Goolsby, 2006).

Insomnia generally affects women more than men and the incidence rate tends to increase with age (Straker, 2008).

There is a clear correlation of age to insomnia (Curless et a!. 1993). A number of surveys have reported between 28% and 64% of post menopausal women suffer from insomnia (Hachul de Campos et al. 2006).

Insomnia can be classified into three categories transient, short-term and chronic insomnia (Tomoda et al, 2009). Transient insomnia are symptoms lasting less than one week, short term insomnia are symptoms lasting between one-three weeks and chronic insomnia are those symptoms lasting longer than three weeks (Tomoda, 2009).

Narcolepsy

Narcolepsy is a sleep disorder that causes overwhelming and severe day time sleepiness (Retsas et al, 2000). Pathologic sleepiness is characterised by the fact that it occurs at inappropriate times and places (Retsas et al, 2000). These daytime sleep attacks may occur with or without warning and can occur repeatedly in a single day (Edgar et al, 2006). People who suffer from Narcolepsy often have fragmented night time sleep with frequent brief awakenings (Edgar et al, 2006).

Narcolepsy is typically characterised by the following four symptoms:

Excessive daytime sleepiness (90%)

Cataplexy: A sudden and temporary loss of muscle tone often triggered by emotions such as laughter. (75%)

Hallucinations: Vivid dreamlike experiences that occur while falling asleep or upon wakening. (30%)

Sleep paralysis: Paralysis that occurs most often upon falling asleep or waking up. The person is unable to move for a few minutes. (25%) (Retsas et al, 2000)

Interestingly, regular night time sleep schedule and scheduled naps during the day is required for favourable outcomes (Edgar et al, 2006).

Sleep Apnoea

Sleep apnoea affects over 12 million Americans with it being more prevalent in men than women (Sjosten et al, 2009).  Sleep apnoea not only deprives sleep from the individual but their partners too (Yip, 2001). Sleep apnoea is defined as frequent and loud snoring and breathing cessation for at least 10 second for five or more episodes per hour followed by awakening abruptly with a loud snort as the blood oxygen level drops (Sjorsten et al, 2009).   People with sleep apnoea can experience anywhere between 5 apnoeic episodes per hour to several hundred per night (Sjorsten et al, 2009).

Symptoms of sleep apnoea are:

Excessive daytime sleepiness

Morning headaches

Sore throat

Intellectual deterioration

Personality changes

Behavioural disorders

Obesity

(Yip, 2001)

Obesity is the major cause of sleep apnoea often losing weight is all that is need to treat this disorder (Yip, 2001).

 

Part 3 and more coming

Read more →

Essential Sleep (Part 2)

Essential Sleep (Part 2)

The benefits of sleep include:

Feeling rested;

Being physically and mentally alert;

Having more energy;

Making fewer mistakes (including causing accidents);

Feeling psychologically and emotionally recovered;

and to experience:

Improved cognitive function;

Improved memory;

Higher stress tolerance and resilience;

Increased productivity;

Normal body balance;

Healthier weight;

Reduced risk of CVD, diabetes and cancer;

Living longer; and

Feeling healthier. 

during sleep the mind is cataloguing our memories and deciding what to keep and what to throw away it is making memories stronger. It also seems to be reorganizing and restructuring memories.

It’s not possible to learn something new when you sleep, like a foreign language, but you can reinforce something you already know.One study found that students learned to play a series of musical notes better after listening to them during a 90-minute nap. The research shows that memory is strengthened for something you’ve already learned. Rather than learning something new in your sleep.

A review of studies on sleep found that we tend to hold on to the most emotional parts of our memories.

Getting enough sleep is associated with energy, joy, optimistic thinking and coping with negative emotions. 

Stages of Sleep                                                                           

Sleep Stage

Brain Waves

Common Characteristics

Frequency

Type

 

 

Stage 1

NREM

 

 

4 to 8

 

 

Alpha

& Theta

 

Transition between sleep and wakefulness

Eyes begin to roll and close

Consists of mostly theta waves with some brief periods of alpha waves (similar to waves of wakefulness)

Stage lasts 5-10 mins

 

 

 

Stage 2

NREM

 

 

8 to 15

 

 

Theta, Spindles,

k-complexes

 

Brain wave peaks become higher

Spontaneous periods of muscle tone mixed with periods of muscle relaxation

Heart rate  and temperature decrease

Stage last 5-10 mins

 

 

Stage 3

NREM

 

2 to 4

 

Delta, Theta

 

Deep Sleep or Delta sleep

Very slow brain waves

 

 

Stage 4

NREM

 

0.5 to 2

 

Delta, Theta

 

The last of deep sleep before REM begins.

Consist mostly of Delta waves

 

 

 

Stage 5

 REM

 

 

 

≥ 12

 

 

 

Beta

 

Beta waves have a high frequency and occur when the brain is active when asleep and awake.

Frequent bursts of rapid eye movement (REM) and muscle twitches.

Increase in heart and breathing rate

Vivid dreaming occurs here.

(Cook and Nendick, 2007)

Circadian Cycle

When a person falls asleep and wakes up is largely determined by their circadian rhythm, a day-night cycle of about 24 hours. Circadian rhythms greatly influence the timing, amount and quality of sleep (Lockley et al. 1997).

Literally hundreds of circadian rhythms have been identified in mammals (Campbell 1993). Among the numerous systems and functions mediated by the circadian timing system are, hormonal output, core body temperature and metabolism. The circadian clock is believed to sit in the suprachiasmatic nucleus (SCN) located in the hypothalamus of the brain. It was thought that processes now linked with circadian timing e.g. sleep wake cycles, were due solely to environmental cues, for example solar activity, it is now recognised however that these biological rhythms are regulated by factors inherent to the organism (Campbell 1993). A circadian rhythm displays a 24 hour cycle of wakefulness and sleep synchronised with the world’s night/day clock (Mansuy et al, 2003).  Everyone’s cycle will vary depending on behavioural and psychological factors (Mansuy et al, 2003).  The most typical pattern will be low alertness in the mornings as we wake, to highly alert mid afternoon (Swain et al, 2007).

The natural circadian rhythm in the body, which maintains a regular sleep-wake cycle, makes important contributions to physiological processes and psychological health. The normal rhythm is reset daily by the influence of bright light in the morning. Shift-workers, who may work at night and sleep in the daytime, and blind people may have difficulty maintaining a normal sleep-wake cycle because the natural environmental cues are miss-timed (Morris 1999). Studies show that shift work is one the greatest influencing factor causing an alteration in an individual’s cycle along with sleeping disorders (Baulk, 2008).  Altering the circadian cycle can lead to periods of decreased alertness leaving people extremely vulnerable to accidents and injuries (Andersen et al, 2009).

Our sleep patterns appear to be polyphasic. In one experiment, subjects were exposed to 14 hours of darkness; then they remained in a state of quiet rest for about two hours before falling asleep.  They then slept for four hours, awakened from a dream, spent another two-hour period in quiet rest, and then fell asleep again for four hours more.  The subjects awoke at 6 a.m. each morning from their dream sleep and then spent two hours in quiet rest before arising at 8 a.m.  These subjects followed their own natural rhythms, sleeping for eight hours with blocks of time at quiet rest (Wehr, S.E, 1996).  This polyphasic sleep appears to be a pattern in many mammals.  We experience hypnagogic imagery – a state described as dreaming, drowsy, floating, wandering – every night just before we fall asleep.  Every night before we go to sleep we spend a few minutes in a state of relaxed wakefulness characterised by drifting thoughts and alpha brainwaves.

Another interesting method for lessening the impact of sleep deprivation was through a study that found there were certain hours better to sleep through the night. A new Stanford University study on the science of sleep deprivation suggests that early­ morning sleep is more restful than a middle‑of‑the‑night nap. In a study of two groups of men they found that early‑morning sleepers scored higher on wakefulness tests and on measures of sleep efficiency. (Stratton, 2003) Although this study shows that there may some advantages to when you get your sleep it is more an avoidance of the problem rather than a solution.

We are also influenced not just by sleep but also our perceptions of its quality. If we think we’ve had a wonderful sleep last night, we feel and perform better, even if our sleep was actually the same as usual. In this study researchers randomly told some people they’d had better sleep than others after they were hooked up to some placebo brain sensors). When they were given a cognitive test the next day, those who’d been told they slept the best also did the best in the test.

 

Part 3 and more coming

Read more →

ADD and ADHD are not a disease

ADD and ADHD are not a disease

Attention Deficit Disorder (ADD) and Attention Deficit Hyperactive Disorder (ADHD) are a group of symptoms and not a disease. Children are classified as ADD when they show signs of inattention, such as a lack of close attention to detail, difficulty in sustaining attention or are easily distracted. Some children may be underactive (hypoactive), inflexible, suffer from speech disorders and have poor short term memory, and show sleep and appetite changes. ADHD has the added signs of hyperactivity such as fidgeting, being always ‘on the go’, disruptive or demonstrate other signs of hyperactivity. While there are more precise definitions for these conditions, they are mostly subjective and open to a large amount of interpretation. ADD/ADHD are relatively new conditions and were probably defined as soon as a pharmaceutical company had a drug to use.

As more investigation is done on these disorders, more controversy is raised about possible origins and causes. It’s likely that ADD/ADHD occurs because of a complex of factors, including illnesses and a combination of susceptibility factors such as genetics, maternal diet during pregnancy and length of breast feeding. The child’s exposure to various chemicals in both food and the environment and their current diet are also probable contributing factors. Some chemicals and foods may act as a trigger for the disorder. Whatever the cause, it seems likely from the nature of the symptoms that ADD/ADHD has many contributing factors. No cases are identical, especially when dealing with children. ADD/ADHD however, is definitely not a deficiency of Ritalin or any other drug.

Surveys suggest that as many as 49 per cent of boys and 27 per cent of girls are described as inattentive by their teachers, while serious deficits in attention appear to occur in at least three to 10 per cent of school-age children, making inattention among the most prevalent of all childhood neuro-psychological disorders. Many of these children are diagnosed as having ADD/ADHD.

Many studies identify a worseing of symptoms with certain foods or food additives; others link lead contamination, smoking and alcohol in pregnancy to developmental disorders in children. The possibility of chemical substances in the diet and the environment influencing ADD/ADHD is highly likely.

Sadly, little real evaluation of ADD/ADHD children is actually carried out. They are not routinely evaluated for chemical, nutritional or allergic factors, or assessed for behavioural or environmental issues arising from their home environment. Instead they are given drugs. This is despite the fact that there is growing body of scientific literature showing significant nutritional deficiencies in many of these children. There is growing evidence that a significant number of ADD/ADHD sufferers have a high body burden of heavy metals, particularly lead, mercury, cadmium and possibly even the trace element copper. These metals are potent toxins which block thousands of important chemical reactions in the body and can play havoc with the nervous system. At even moderate concentrations, lead can lower a child’s IQ. Recent research links infant and maternal exposure to lead with higher rates of schizophrenia.

 

Nutritional deficiency is an underlying cause of  ADD/ADHD in a significant number of children. Correcting these deficiencies and inbalances can make substantial improvements in childrens’ behaviour. Sometimes improvement is almost immediate.

The basic problem appears to be deficient levels of neurotransmitters (chemicals that coordinate many of the body’s and mind’s activities) in brain cells. Various chemical substances affect the transmission of messages across the synapse, the gap between individual nerve cells. Acetylcholine, adrenalin, noradrenaline, dopamine, gamma-aminobutyric acid (GABA) and serotonin are all examples of neurotransmitters. Some of these chemicals are responsible for other chemical secretions and uptake. They control muscular activity, mood and behaviour. So you can see how they might be involved in ADD/ADHD.

Over-prescription of drugs, (particularly the amphetamine Ritalin, one brand name for methyl phenidate) that manage the symptoms of the disorder, is common. In Western Australia the annual use of prescription amphetamine-like tablets prescribed for ADD/ADHD has exploded. There are many problems associated with taking these drugs. They include anorexia, weight loss, insomnia, lability of mood, nervousness and irritability, abdominal discomfort, excessive withdrawal symptoms, heart arrhythmias, palpitations and psychological dependence. Suicide is also a major complication of withdrawal from amphetamine-like drugs. Children on Ritalin are more prone to become addicted to smoking and illicit drugs. These drugs don’t deal with the underlying cause. The US National Institute of Health has concluded that there is no evidence that Ritalin brings about any long-term benefit in scholastic performance.

These drugs have a noradrenaline-like action. Noradrenaline normally acts to coordinate many nervous system functions. It’s thought to filter out unimportant stimuli, reducing the number of distractions sensed by the child. If ADD/ADHD is a noradrenaline shortage, it could be measured, but no one seems to want to do this. It’s much easier (and more profitable?) to prescribe drugs. If it’s a noradrenaline shortage, it can at least to some degree, be corrected by dietary measures.

There are many reasons as to why a child may have a poor nutrition. These include being breast-fed for only a short period of time. Infant milk formulas and cows’ milk  are not the same as human milk. Cows’ milk is great for a calf that needs to put on weight directly after birth. A cow’s brain does not grow after birth. The human brain continues to grow substantially up to the age of three, and then more slowly, up to 18 years of age. It’s not surprising then, that human milk is high in Essential Fatty Acids (EFAs) and choline, along with many other ingredients essential for the development of a healthy brain and nervous system. Both these nutrients are severely deficient in many infants’ and children’s diets, particularly if the diet is high in grains and processed foods.

One explanation for the higher rates of ADD/ADHD in males is that males have a higher demand for EFAs (Omega 3 oils). Males don’t appear to absorb them well and are less efficient at converting them to an important group of chemicals called prostaglandins. Prostaglandins regulate many activities in the body and play an essential part in others. Many of the foods that are linked with ADD/ADHD also inhibit the conversion of the EFAs to prostaglandins. Foods such as wheat, dairy and salicylate-containing foods, including some of the food colours. Conversion is also blocked by deficiencies in Vitamins B3, B6, C, biotin, zinc and magnesium. There are many studies now that show the benefit of supplementing the diet with fish oils and flax seed oil, not only for adults but for kids being treated with Ritalin. What’s also interesting about the EFAs is that many of our parents were dosed with them once or twice a week in the form of cod liver oil.

ADD/ADHD children appear to be deficient in a number of nutrients:

Vitamin C;

Vitamin B3;

Zinc;

Magnesium; and,

Essential fatty Acids (Omega 3 rich oils).

It may be that there is an absence of these nutrients in the diet. It may be the effects of medication, stress, and other lifestyle factors, including exposure to some environmental contaminants, that have lead to nutritional deficiencies. For example, the use of antibiotics has been shown to have an effect on the nutritional status of children, as they deplete the body’s levels of zinc, calcium, chromium and selenium. Antibiotics, other medication and  food preservatives can also have a serious detrimental effect on the healthy gut bacteria which in turn affects the ability of the gut to absorb nutrients.

Academic performance and behavioural problems improve significantly when children are given optimal nutrition and nutritional supplements. In one study, supplementing with just 200 milligrams of magnesium for six months improved magnesium status and significantly reduced hyperactivity. Magnesium plays a key role in the production of noradrenaline. One of the main sources of magnesium in our diets is green vegetables, but few kids get enough of these. Other nutrients involved in the production of noradrenaline include manganese, iron, copper zinc, Vitamin C and Vitamin B6.

Noradrenaline formation may be affected by an absence of the amino acids L-phenylalanine or L-tyrosine, which are its building blocks. Vitamins B1, B2, B3, B6, Vitamin C, Folic acid and the minerals zinc, magnesium and copper are necessary for the conversion of phenylalanine and tyrosine to noradrenaline.

It has been proposed for many years that food additives and other food constituents can contribute to ADD/ADHD. While this is refuted by the food additive industry, there’s growing evidence that this is the case. It’s also becoming apparent that there are biochemical explanations as to why some foods and food additives, particularly the food colours, may be contributing factors. For example, salicylates inhibit the conversion of the EFAs to the protective prostaglandins, as mentioned earlier. Many foods that contain salicylates - tomatoes and granny smith apples, as well as aspirin and the food colours like tartrazine (102) - may exacerbate ADD/ADHD.

Food additives linked with ADD/ADHD can also deplete the body of vitamins and minerals. Tartrazine decreases blood levels of zinc and increases its excretion in the urine.

Food additives to avoid are

102, 107, 104, 110, 120, 122, 123, 124, 127, 129, 132, 133, 142, 151, 153, 155, 160b, 168, 173, 250, 251, 252, 282, 320, 321, 420, 421, 621 (MSG) 622, 624, 627,631, 635, 951 (Nutrasweet®, Aspartame®).

The diet of the pregnant and breast-feeding mother is very important. Infant and early childhood health conditions have a big role in the health of middle childhood.  This is supported by research on alcohol exposure at various stages of pregnancy, hence the importance of good foetal and childhood nutrition.

 

What to do about food

For any child with ADD/ADHD it’s important to identify foods that may be causing a problem. This is best done with a professional such as a naturopath. or a doctor specialising in nutritional and environmental medicine. With these professionals you can devise an elimination diet to identify potential environmental and dietary culprits. Some of the culprits are shown below.

The main foods causing sensitivities and allergies include:

  • Cow’s milk and associated dairy products;
  • Some legumes – soybeans, peanuts;
  • Nuts and seeds –pistachio nuts, cashews, macadamia nuts, cottonseed;
  • Crustaceans – shellfish, shrimps;
  • Fruits (non-citrus) – cherry, apple;
  • Citrus Fruits – oranges, lemons, limes;
  • Wheat and Other Grains – corn, rice, rye, oats, barley, buckwheat;
  • Cola nut products – chocolate, cola;
  • Spices – cinnamon, bay leaf, peppers, peppermint, oregano, sage, thyme, cumin;
  • Food Additives – coal tar dyes, preservatives, flavour enhancers, artificial sweeteners; and,
  • Caffeine – coffee, tea, chocolate, cola drinks.

The brain uses only glucose for energy. The research on sugar suggests that it may not be a major factor in ADD/ADHD. However, brain glucose that comes in waves of high highs and low lows is likely to affect a kid’s mood.

 

Read more →